메뉴 건너뛰기




Volumn 2, Issue , 2017, Pages 341-346

Multi-Task learning of keyphrase boundary classification

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; DEEP NEURAL NETWORKS; LEARNING SYSTEMS; LINGUISTICS; RECURRENT NEURAL NETWORKS; SEMANTICS;

EID: 85040544828     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/P17-2054     Document Type: Conference Paper
Times cited : (69)

References (26)
  • 1
    • 85046977422 scopus 로고    scopus 로고
    • SemEval-2017 task 10: Extracting keyphrases and relations from scientific publications
    • to appear
    • Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew McCallum. 2017. SemEval-2017 Task 10: Extracting Keyphrases and Relations from Scientific Publications. In Proceedings of SemEval, to appear.
    • (2017) Proceedings of SemEval
    • Augenstein, I.1    Das, M.2    Riedel, S.3    Vikraman, L.4    McCallum, A.5
  • 3
    • 85040939450 scopus 로고    scopus 로고
    • Improving historical spelling normalization with bi-directional LSTMs and multi-task learning
    • Marcel Bollman and Anders Søgaard. 2016. Improving historical spelling normalization with bi-directional LSTMs and multi-task learning. In Proceedings of COLING.
    • (2016) Proceedings of COLING
    • Bollman, M.1    Søgaard, A.2
  • 4
    • 85121045899 scopus 로고
    • Multitask learning: A knowledge-based source of inductive bias
    • Rich Caruana. 1993. Multitask Learning: A Knowledge-Based Source of Inductive Bias. In Proceedings of ICML.
    • (1993) Proceedings of ICML
    • Caruana, R.1
  • 8
    • 84943812909 scopus 로고    scopus 로고
    • Multi-task learning for multiple language translation
    • Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. 2015. Multi-Task Learning for Multiple Language Translation. In Proceedings of ACL.
    • (2015) Proceedings of ACL
    • Dong, D.1    Wu, H.2    He, W.3    Yu, D.4    Wang, H.5
  • 9
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by gibbs sampling
    • Jenny Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into information extraction systems by Gibbs sampling. In Proceedings of ACL.
    • (2005) Proceedings of ACL
    • Finkel, J.1    Grenager, T.2    Manning, C.3
  • 10
    • 27744588611 scopus 로고    scopus 로고
    • Frame-wise phoneme classification with bidirectional LSTM and other neural network architectures
    • Alex Graves and Jürgen Schmidhuber. 2005. Frame-wise Phoneme Classification with Bidirectional LSTM and other Neural Network Architectures. Neural Networks 18(5):602–610.
    • (2005) Neural Networks , vol.18 , Issue.5 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 11
    • 84906925385 scopus 로고    scopus 로고
    • Automatic keyphrase extraction: A survey of the state of the art
    • Kazi Saidul Hasan and Vincent Ng. 2014. Automatic Keyphrase Extraction: A Survey of the State of the Art. In Proceedings of ACL.
    • (2014) Proceedings of ACL
    • Hasan, K.S.1    Ng, V.2
  • 13
    • 79960612755 scopus 로고    scopus 로고
    • SemEval-2010 task 5: Automatic keyphrase extraction from scientific articles
    • Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. 2010. SemEval-2010 Task 5: Automatic Keyphrase Extraction from Scientific Articles. In Proceedings of SemEval.
    • (2010) Proceedings of SemEval
    • Kim, S.N.1    Medelyan, O.2    Kan, M.-Y.3    Baldwin, T.4
  • 15
    • 84959934993 scopus 로고    scopus 로고
    • Fine-grained opinion mining with recurrent neural networks and word embeddings
    • Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings. In Proceedings of EMNLP.
    • (2015) Proceedings of EMNLP
    • Liu, P.1    Joty, S.2    Meng, H.3
  • 16
    • 85029379691 scopus 로고    scopus 로고
    • Deep multi-task learning with shared memory for text classification
    • Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Deep Multi-Task Learning with Shared Memory for Text Classification. In Proceedings of EMNLP.
    • (2016) Proceedings of EMNLP
    • Liu, P.1    Qiu, X.2    Huang, X.3
  • 18
    • 85021626507 scopus 로고    scopus 로고
    • When is multitask learning effective? Semantic sequence prediction under varying data conditions
    • Héctor Martínez Alonso and Barbara Plank. 2017. When is multitask learning effective? Semantic sequence prediction under varying data conditions. In Proceedings of EACL.
    • (2017) Proceedings of EACL
    • Alonso, H.M.1    Plank, B.2
  • 19
    • 30744438843 scopus 로고    scopus 로고
    • Bounds for linear multi task learning
    • Andreas Maurer. 2007. Bounds for Linear Multi Task Learning. Journal of Machine Learning Research 7:117–139.
    • (2007) Journal of Machine Learning Research , vol.7 , pp. 117-139
    • Maurer, A.1
  • 20
    • 85037132287 scopus 로고    scopus 로고
    • The ACL RD-TEC 2.0: A language resource for evaluating term extraction and entity recognition methods
    • Behrang QasemiZadeh and Anne-Kathrin Schumann. 2016. The ACL RD-TEC 2.0: A Language Resource for Evaluating Term Extraction and Entity Recognition Methods. In Proceedings of LREC.
    • (2016) Proceedings of LREC
    • QasemiZadeh, B.1    Schumann, A.-K.2
  • 21
    • 85040601183 scopus 로고    scopus 로고
    • Semi-supervised multitask learning for sequence labeling
    • to appear
    • Marek Rei. 2017. Semi-supervised Multitask Learning for Sequence Labeling. In Proceedings of ACL, to appear.
    • (2017) Proceedings of ACL
    • Rei, M.1
  • 22
    • 84960155912 scopus 로고    scopus 로고
    • A corpus and model integrating multiword expressions and supersenses
    • Nathan Schneider and Noah Smith. 2015. A Corpus and Model Integrating Multiword Expressions and Supersenses. Proceedings of NAACL-HLT .
    • (2015) Proceedings of NAACL-HLT
    • Schneider, N.1    Smith, N.2
  • 23
    • 85002310679 scopus 로고    scopus 로고
    • Deep multi-task learning with low level tasks supervised at lower layers
    • Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low level tasks supervised at lower layers. In Proceedings of ACL.
    • (2016) Proceedings of ACL
    • Søgaard, A.1    Goldberg, Y.2
  • 24
    • 84859941983 scopus 로고    scopus 로고
    • Profiting from mark-Up: Hyper-text annotations for guided parsing
    • Valentin Spitkovsky, Daniel Jurafsky, and Hiyan Al-shawi. 2010. Profiting from Mark-Up: Hyper-Text Annotations for Guided Parsing. In Proceedings of ACL.
    • (2010) Proceedings of ACL
    • Spitkovsky, V.1    Jurafsky, D.2    Alshawi, H.3
  • 26


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.