메뉴 건너뛰기




Volumn 172, Issue , 2018, Pages 896-902

A common framework for the problem of deriving estimates of dynamic functional brain connectivity

Author keywords

Brain connectivity; Dynamic functional connectivity; fMRI; Resting state; Sliding window

Indexed keywords

AMPLITUDE MODULATION; ARTICLE; BOLD SIGNAL; BRAIN REGION; CORRELATIONAL STUDY; FUNCTIONAL CONNECTIVITY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; PRIORITY JOURNAL; SIMULATION; BIOLOGICAL MODEL; BRAIN; BRAIN MAPPING; HUMAN; NERVE CELL NETWORK; PHYSIOLOGY; PROCEDURES;

EID: 85040453272     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2017.12.057     Document Type: Article
Times cited : (25)

References (26)
  • 2
    • 85016713887 scopus 로고    scopus 로고
    • Positive affect, surprise, and fatigue are correlates of network flexibility
    • Betzel, R.F., Satterthwaite, T.D., Gold, J.I., Bassett, D.S., Positive affect, surprise, and fatigue are correlates of network flexibility. Sci. Rep., 7, 2017, 520, 10.1038/s41598-017-00425-z.
    • (2017) Sci. Rep. , vol.7 , pp. 520
    • Betzel, R.F.1    Satterthwaite, T.D.2    Gold, J.I.3    Bassett, D.S.4
  • 3
    • 84908246606 scopus 로고    scopus 로고
    • The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
    • Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T., The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84 (2014), 262–274, 10.1016/j.neuron.2014.10.015.
    • (2014) Neuron , vol.84 , pp. 262-274
    • Calhoun, V.D.1    Miller, R.2    Pearlson, G.3    Adalı, T.4
  • 4
    • 85020301304 scopus 로고    scopus 로고
    • Multilayer modeling and analysis of human brain networks
    • De Domenico, M., Multilayer modeling and analysis of human brain networks. GigaScience, 2017, 10.1093/gigascience/gix004.
    • (2017) GigaScience
    • De Domenico, M.1
  • 5
    • 34247493236 scopus 로고    scopus 로고
    • Matplotlib: a 2D graphics environment
    • Hunter, J.D., Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9 (2007), 99–104, 10.1109/MCSE.2007.55.
    • (2007) Comput. Sci. Eng. , vol.9 , pp. 99-104
    • Hunter, J.D.1
  • 6
    • 84880330342 scopus 로고    scopus 로고
    • Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
    • Hutchison, R.M., Womelsdorf, T., Gati, J.S., Everling, S., Menon, R.S., Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 34 (2013), 2154–2177, 10.1002/hbm.22058.
    • (2013) Hum. Brain Mapp. , vol.34 , pp. 2154-2177
    • Hutchison, R.M.1    Womelsdorf, T.2    Gati, J.S.3    Everling, S.4    Menon, R.S.5
  • 7
    • 79955476785 scopus 로고    scopus 로고
    • Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches
    • Kang, J., Wang, L., Yan, C., Wang, J., Liang, X., He, Y., Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. Neuroimage 56 (2011), 1222–1234, 10.1016/j.neuroimage.2011.03.033.
    • (2011) Neuroimage , vol.56 , pp. 1222-1234
    • Kang, J.1    Wang, L.2    Yan, C.3    Wang, J.4    Liang, X.5    He, Y.6
  • 8
    • 84870997831 scopus 로고    scopus 로고
    • A sliding time-window ICA reveals spatial variability of the default mode network in time
    • Kiviniemi, V., Vire, T., Remes, J., Elseoud, A.A., Starck, T., Tervonen, O., Nikkinen, J., A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect. 1 (2011), 339–347, 10.1089/brain.2011.0036.
    • (2011) Brain Connect. , vol.1 , pp. 339-347
    • Kiviniemi, V.1    Vire, T.2    Remes, J.3    Elseoud, A.A.4    Starck, T.5    Tervonen, O.6    Nikkinen, J.7
  • 10
    • 84886441779 scopus 로고    scopus 로고
    • Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest
    • Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Schluep, M., Vuilleumier, P., Van De Ville, D., Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83 (2013), 937–950, 10.1016/j.neuroimage.2013.07.019.
    • (2013) Neuroimage , vol.83 , pp. 937-950
    • Leonardi, N.1    Richiardi, J.2    Gschwind, M.3    Simioni, S.4    Annoni, J.-M.5    Schluep, M.6    Vuilleumier, P.7    Van De Ville, D.8
  • 11
    • 84926317380 scopus 로고    scopus 로고
    • On spurious and real fluctuations of dynamic functional connectivity during rest
    • Leonardi, N., Van De Ville, D., On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104 (2015), 430–436, 10.1016/j.neuroimage.2014.09.007.
    • (2015) Neuroimage , vol.104 , pp. 430-436
    • Leonardi, N.1    Van De Ville, D.2
  • 12
    • 84907022675 scopus 로고    scopus 로고
    • Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
    • Lindquist, M.A., Xu, Y., Nebel, M.B., Caffo, B.S., Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. Neuroimage 101 (2014), 531–546, 10.1016/j.neuroimage.2014.06.052.
    • (2014) Neuroimage , vol.101 , pp. 531-546
    • Lindquist, M.A.1    Xu, Y.2    Nebel, M.B.3    Caffo, B.S.4
  • 13
    • 84875045497 scopus 로고    scopus 로고
    • Time-varying functional network information extracted from brief instances of spontaneous brain activity
    • Liu, X., Duyn, J.H., Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl. Acad. Sci. Unit. States Am. 110 (2013), 4392–4397, 10.1073/pnas.1216856110.
    • (2013) Proc. Natl. Acad. Sci. Unit. States Am. , vol.110 , pp. 4392-4397
    • Liu, X.1    Duyn, J.H.2
  • 14
    • 34247500374 scopus 로고    scopus 로고
    • SciPy: open source scientific tools for Python
    • Oliphant, T.E., SciPy: open source scientific tools for Python. Comput. Sci. Eng. 9 (2007), 10–20, 10.1109/MCSE.2007.58.
    • (2007) Comput. Sci. Eng. , vol.9 , pp. 10-20
    • Oliphant, T.E.1
  • 15
    • 84938742391 scopus 로고    scopus 로고
    • Characterizing and differentiating brain state dynamics via hidden Markov models
    • Ou, J., Xie, L., Jin, C., Li, X., Zhu, D., Jiang, R., Chen, Y., Zhang, J., Li, L., Liu, T., Characterizing and differentiating brain state dynamics via hidden Markov models. Brain Topogr. 28 (2015), 666–679, 10.1007/s10548-014-0406-2.
    • (2015) Brain Topogr. , vol.28 , pp. 666-679
    • Ou, J.1    Xie, L.2    Jin, C.3    Li, X.4    Zhu, D.5    Jiang, R.6    Chen, Y.7    Zhang, J.8    Li, L.9    Liu, T.10
  • 16
    • 85009186296 scopus 로고    scopus 로고
    • The dynamic functional connectome: state-of-the-art and perspectives
    • Preti, M.G., Bolton, T.A., Ville, D.V.D., The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage, 2016, 10.1016/j.neuroimage.2016.12.061.
    • (2016) Neuroimage
    • Preti, M.G.1    Bolton, T.A.2    Ville, D.V.D.3
  • 17
    • 85012109002 scopus 로고    scopus 로고
    • Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior
    • Senden, M., Reuter, N., Heuvel, M.P., van den, Goebel, R., Deco, G., Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. Neuroimage 146 (2017), 561–574, 10.1016/j.neuroimage.2016.10.044.
    • (2017) Neuroimage , vol.146 , pp. 561-574
    • Senden, M.1    Reuter, N.2    Heuvel, M.P.3    van den4    Goebel, R.5    Deco, G.6
  • 18
    • 84940528665 scopus 로고    scopus 로고
    • Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
    • Shine, J.M., Koyejo, O., Bell, P.T., Gorgolewski, K.J., Gilat, M., Poldrack, R.A., Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives. Neuroimage 122 (2015), 399–407, 10.1016/j.neuroimage.2015.07.064.
    • (2015) Neuroimage , vol.122 , pp. 399-407
    • Shine, J.M.1    Koyejo, O.2    Bell, P.T.3    Gorgolewski, K.J.4    Gilat, M.5    Poldrack, R.A.6
  • 20
    • 85047342951 scopus 로고    scopus 로고
    • From static to temporal network theory –applications to functional brain connectivity
    • Thompson, W.H., Brantefors, P., Fransson, P., From static to temporal network theory –applications to functional brain connectivity. Netw. Neurosci. 1 (2017), 1–37, 10.1101/096461.
    • (2017) Netw. Neurosci. , vol.1 , pp. 1-37
    • Thompson, W.H.1    Brantefors, P.2    Fransson, P.3
  • 21
    • 85006333189 scopus 로고    scopus 로고
    • Bursty properties revealed in large-scale brain networks with a point-based method for dynamic functional connectivity
    • Thompson, W.H., Fransson, P., Bursty properties revealed in large-scale brain networks with a point-based method for dynamic functional connectivity. Sci. Rep., 6, 2016, 39156, 10.1038/srep39156.
    • (2016) Sci. Rep. , vol.6 , pp. 39156
    • Thompson, W.H.1    Fransson, P.2
  • 22
    • 85003856211 scopus 로고    scopus 로고
    • On stabilizing the variance of dynamic functional brain connectivity time series
    • Thompson, W.H., Fransson, P., On stabilizing the variance of dynamic functional brain connectivity time series. Brain Connect. 6 (2016), 735–746, 10.1089/brain.2016.0454.
    • (2016) Brain Connect. , vol.6 , pp. 735-746
    • Thompson, W.H.1    Fransson, P.2
  • 23
    • 85045451684 scopus 로고    scopus 로고
    • A simulation and comparison of dynamic func- tional connectivity methods
    • 212241
    • Thompson, W.H., Richter, C.G., Plavén-sigray, P., A simulation and comparison of dynamic func- tional connectivity methods. bioRxiv, 212241, 2017, 10.1101/212241.
    • (2017) bioRxiv
    • Thompson, W.H.1    Richter, C.G.2    Plavén-sigray, P.3
  • 24
    • 79952595565 scopus 로고    scopus 로고
    • The NumPy array: a structure for efficient numerical computation
    • Van Der Walt, S., Colbert, S.C., Varoquaux, G., The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13 (2011), 22–30, 10.1109/MCSE.2011.37.
    • (2011) Comput. Sci. Eng. , vol.13 , pp. 22-30
    • Van Der Walt, S.1    Colbert, S.C.2    Varoquaux, G.3
  • 25
    • 84938330081 scopus 로고    scopus 로고
    • Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
    • Xu, Y., Lindquist, M.A., Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data. Front. Neurosci., 9, 2015, 10.3389/fnins.2015.00285.
    • (2015) Front. Neurosci. , vol.9
    • Xu, Y.1    Lindquist, M.A.2
  • 26
    • 84929712322 scopus 로고    scopus 로고
    • Towards a statistical test for functional connectivity dynamics
    • Zalesky, A., Breakspear, M., Towards a statistical test for functional connectivity dynamics. Neuroimage 114 (2015), 466–470, 10.1016/j.neuroimage.2015.03.047.
    • (2015) Neuroimage , vol.114 , pp. 466-470
    • Zalesky, A.1    Breakspear, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.