-
4
-
-
84964677992
-
Detecting neuroimaging biomarkers for psychiatric disorders: Sample size matters
-
Schnack HG, Kahn RS. Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters. Front Psychiatry 2016; 7: 50.
-
(2016)
Front Psychiatry
, vol.7
, pp. 50
-
-
Schnack, H.G.1
Kahn, R.S.2
-
6
-
-
85039844158
-
Evidenced-based pragmatic psychiatry-A call to action
-
Paulus MP. Evidenced-based pragmatic psychiatry-A call to action. JAMA Psychiatry 2017.
-
(2017)
JAMA Psychiatry
-
-
Paulus, M.P.1
-
7
-
-
85039854014
-
Bigger data harder questions-opportunities throughout Mental Health Care
-
Chekroud AM. Bigger Data, Harder Questions-Opportunities Throughout Mental Health Care. JAMA Psychiatry 2017.
-
(2017)
JAMA Psychiatry
-
-
Chekroud, A.M.1
-
8
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature 2009; 457: 1012-1014.
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
9
-
-
84896056107
-
The parable of Google flu: Traps in big data analysis
-
Lazer D, Kennedy R, King G, Vespignani A. The parable of Google flu: Traps in big data analysis. Science 2014; 343: 1203-1205.
-
(2014)
Science
, vol.343
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
10
-
-
84978105459
-
Why most clinical research is not useful
-
Ioannidis JPA. Why most clinical research is not useful. PLoS Med 2016; 13: 1-10.
-
(2016)
PLoS Med
, vol.13
, pp. 1-10
-
-
Ioannidis, J.P.A.1
-
11
-
-
84959571586
-
Cross-Trial prediction of treatment outcome in depression: A machine learning approach
-
Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH et al. Cross-Trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry 2016; 3: 243-50.
-
(2016)
Lancet Psychiatry
, vol.3
, pp. 243-250
-
-
Chekroud, A.M.1
Zotti, R.J.2
Shehzad, Z.3
Gueorguieva, R.4
Johnson, M.K.5
Trivedi, M.H.6
-
12
-
-
85017596150
-
Reevaluating the efficacy and predictability of antidepressant treatments
-
Chekroud AM, Gueorguieva R, Krumholz HM, Trivedi MH, Krystal JH, McCarthy G. Reevaluating the efficacy and predictability of antidepressant treatments. JAMA Psychiatry 2017; 74: 370-378.
-
(2017)
JAMA Psychiatry
, vol.74
, pp. 370-378
-
-
Chekroud, A.M.1
Gueorguieva, R.2
Krumholz, H.M.3
Trivedi, M.H.4
Krystal, J.H.5
McCarthy, G.6
-
13
-
-
85040045963
-
Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: A machine learning approach
-
Koutsouleris N, Kahn RS, Chekroud AM, Leucht S, Falkai P, Wobrock T et al. Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: A machine learning approach. Lancet Psychiatry 2016; 25: 25.
-
(2016)
Lancet Psychiatry
, vol.25
, pp. 25
-
-
Koutsouleris, N.1
Kahn, R.S.2
Chekroud, A.M.3
Leucht, S.4
Falkai, P.5
Wobrock, T.6
-
14
-
-
74249103959
-
Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients
-
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P, Schnakers C et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133: 161-171.
-
(2010)
Brain
, vol.133
, pp. 161-171
-
-
Vanhaudenhuyse, A.1
Noirhomme, Q.2
Tshibanda, L.J.F.3
Bruno, M.A.4
Boveroux, P.5
Schnakers, C.6
-
15
-
-
84954171564
-
Why psychiatry needs data science and data science Needs Psychiatry
-
Torous J, Baker JT. Why Psychiatry Needs Data Science and Data Science Needs Psychiatry. JAMA Psychiatry 2016; 73: 3-4.
-
(2016)
JAMA Psychiatry
, vol.73
, pp. 3-4
-
-
Torous, J.1
Baker, J.T.2
-
16
-
-
33747607232
-
Case finding for patients at risk of readmission to hospital: Development of algorithm to identify high risk patients
-
Billings J, Dixon J, Mijanovich T, Wennberg D. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. BMJ 2006; 333: 327.
-
(2006)
BMJ
, vol.333
, pp. 327
-
-
Billings, J.1
Dixon, J.2
Mijanovich, T.3
Wennberg, D.4
-
17
-
-
34748824362
-
Telephone screening, outreach, and care management for depressed workers and impact on clinical and work productivity outcomes: A randomized controlled trial
-
Wang PS, Simon GE, Avorn J, Azocar F, Ludman EJ, McCulloch J et al. Telephone screening, outreach, and care management for depressed workers and impact on clinical and work productivity outcomes: A randomized controlled trial. JAMA 2007; 298: 1401-1411.
-
(2007)
JAMA
, vol.298
, pp. 1401-1411
-
-
Wang, P.S.1
Simon, G.E.2
Avorn, J.3
Azocar, F.4
Ludman, E.J.5
McCulloch, J.6
|