메뉴 건너뛰기




Volumn 7, Issue MAR, 2016, Pages

Detecting neuroimaging biomarkers for psychiatric disorders: Sample size matters

Author keywords

Classification and prediction; Effect size; Heterogeneity; Machine learning; Neuroimaging; Schizophrenia

Indexed keywords

BIOLOGICAL MARKER;

EID: 84964677992     PISSN: None     EISSN: 16640640     Source Type: Journal    
DOI: 10.3389/fpsyt.2016.00050     Document Type: Article
Times cited : (188)

References (30)
  • 1
    • 84939987420 scopus 로고    scopus 로고
    • Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies
    • Kambeitz J, Kambeitz-Ilankovic L, Leucht S, Wood S, Davatzikos C, Malchow B, et al. Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology (2015) 40:1742-51. doi: 10.1038/npp.2015.22
    • (2015) Neuropsychopharmacology , vol.40 , pp. 1742-1751
    • Kambeitz, J.1    Kambeitz-Ilankovic, L.2    Leucht, S.3    Wood, S.4    Davatzikos, C.5    Malchow, B.6
  • 3
    • 84902213440 scopus 로고    scopus 로고
    • Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD
    • Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, et al. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp (2014) 35:3083-94. doi:10.1002/hbm.22386
    • (2014) Hum Brain Mapp , vol.35 , pp. 3083-3094
    • Hart, H.1    Chantiluke, K.2    Cubillo, A.I.3    Smith, A.B.4    Simmons, A.5    Brammer, M.J.6
  • 4
    • 84884243434 scopus 로고    scopus 로고
    • Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
    • Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage (2014) 84:299-306. doi:10.1016/j.neuroimage.2013.08.053
    • (2014) Neuroimage , vol.84 , pp. 299-306
    • Schnack, H.G.1    Nieuwenhuis, M.2    van Haren, N.E.3    Abramovic, L.4    Scheewe, T.W.5    Brouwer, R.M.6
  • 5
    • 84859260848 scopus 로고    scopus 로고
    • Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study
    • Mourao-Miranda J, Reinders AA, Rocha-Rego V, Lappin J, Rondina J, Morgan C, et al. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol Med (2012) 42:1037-47. doi:10.1017/S0033291711002005
    • (2012) Psychol Med , vol.42 , pp. 1037-1047
    • Mourao-Miranda, J.1    Reinders, A.A.2    Rocha-Rego, V.3    Lappin, J.4    Rondina, J.5    Morgan, C.6
  • 7
    • 84869056209 scopus 로고    scopus 로고
    • Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification
    • Koutsouleris N, Davatzikos C, Bottlender R, Patschurek-Kliche K, Scheuerecker J, Decker P, et al. Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification. Schizophr Bull (2012) 38:1200-15. doi:10.1093/schbul/sbr037
    • (2012) Schizophr Bull , vol.38 , pp. 1200-1215
    • Koutsouleris, N.1    Davatzikos, C.2    Bottlender, R.3    Patschurek-Kliche, K.4    Scheuerecker, J.5    Decker, P.6
  • 8
    • 84878825019 scopus 로고    scopus 로고
    • Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition
    • Borgwardt S, Koutsouleris N, Aston J, Studerus E, Smieskova R, Riecher-Rössler A, et al. Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophr Bull (2013) 39:1105-14. doi:10.1093/schbul/sbs095
    • (2013) Schizophr Bull , vol.39 , pp. 1105-1114
    • Borgwardt, S.1    Koutsouleris, N.2    Aston, J.3    Studerus, E.4    Smieskova, R.5    Riecher-Rössler, A.6
  • 9
    • 84885164024 scopus 로고    scopus 로고
    • Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level
    • Zarogianni E, Moorhead TW, Lawrie SM. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin (2013) 3:279-89. doi:10.1016/j.nicl.2013.09.003
    • (2013) Neuroimage Clin , vol.3 , pp. 279-289
    • Zarogianni, E.1    Moorhead, T.W.2    Lawrie, S.M.3
  • 10
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev (2012) 36:1140-52. doi:10.1016/j.neubiorev.2012.01.004
    • (2012) Neurosci Biobehav Rev , vol.36 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3    Sartori, G.4    Mechelli, A.5
  • 11
    • 84861187769 scopus 로고    scopus 로고
    • Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
    • Nieuwenhuis M, van Haren NE, Hulshoff Pol HE, Cahn W, Kahn RS, Schnack HG. Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage (2012) 61:606-12. doi:10.1016/j.neuroimage.2012.03.079
    • (2012) Neuroimage , vol.61 , pp. 606-612
    • Nieuwenhuis, M.1    van Haren, N.E.2    Hulshoff Pol, H.E.3    Cahn, W.4    Kahn, R.S.5    Schnack, H.G.6
  • 12
    • 84897126113 scopus 로고    scopus 로고
    • Psychiatric disorders: diagnosis to therapy
    • Krystall JH, State MW. Psychiatric disorders: diagnosis to therapy. Cell (2014) 157:201-14. doi:10.1016/j.cell.2014.02.042
    • (2014) Cell , vol.157 , pp. 201-214
    • Krystall, J.H.1    State, M.W.2
  • 13
    • 84979866940 scopus 로고    scopus 로고
    • Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis
    • Zhang T, Koutsouleris N, Meisenzahl E, Davatzikos C. Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis. Schizophr Bull (2015) 41:74-84. doi:10.1093/schbul/sbu136
    • (2015) Schizophr Bull , vol.41 , pp. 74-84
    • Zhang, T.1    Koutsouleris, N.2    Meisenzahl, E.3    Davatzikos, C.4
  • 14
    • 84929505685 scopus 로고    scopus 로고
    • Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
    • Janousova E, Schwarz D, Kasparek T. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatry Res (2015) 232:237-49. doi:10.1016/j.pscychresns.2015.03.004
    • (2015) Psychiatry Res , vol.232 , pp. 237-249
    • Janousova, E.1    Schwarz, D.2    Kasparek, T.3
  • 15
    • 80051781186 scopus 로고    scopus 로고
    • Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia
    • Castro E, Martínez-Ramón M, Pearlson G, Sui J, Calhoun VD. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage (2011) 58:526-36. doi:10.1016/j.neuroimage.2011.06.044
    • (2011) Neuroimage , vol.58 , pp. 526-536
    • Castro, E.1    Martínez-Ramón, M.2    Pearlson, G.3    Sui, J.4    Calhoun, V.D.5
  • 16
    • 70349313293 scopus 로고    scopus 로고
    • A unified framework for MR based disease classification
    • Pohl KM, Sabuncu MR. A unified framework for MR based disease classification. Inf Process Med Imaging (2009) 21:300-13. doi:10.1007/978-3-642-02498-6_25
    • (2009) Inf Process Med Imaging , vol.21 , pp. 300-313
    • Pohl, K.M.1    Sabuncu, M.R.2
  • 18
    • 73649110589 scopus 로고    scopus 로고
    • Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain variables
    • Takayanagi Y, Kawasaki Y, Nakamura K, Takahashi T, Orikabe L, Toyoda E, et al. Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain variables. Prog Neuropsychopharmacol Biol Psychiatry (2010) 34:10-7. doi:10.1016/j.pnpbp.2009.09.004
    • (2010) Prog Neuropsychopharmacol Biol Psychiatry , vol.34 , pp. 10-17
    • Takayanagi, Y.1    Kawasaki, Y.2    Nakamura, K.3    Takahashi, T.4    Orikabe, L.5    Toyoda, E.6
  • 19
    • 84892424989 scopus 로고    scopus 로고
    • Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging
    • Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging. Front Psychiatry (2013) 4:95. doi:10.3389/fpsyt.2013.00095
    • (2013) Front Psychiatry , vol.4 , pp. 95
    • Iwabuchi, S.J.1    Liddle, P.F.2    Palaniyappan, L.3
  • 20
    • 0003577917 scopus 로고
    • Statistical Power Analysis for the Behavioral Sciences
    • 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates
    • Cohen. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates (1988).
    • (1988)
    • Cohen.1
  • 21
    • 84860140138 scopus 로고    scopus 로고
    • Kraepelin was right: a latent class analysis of symptom dimensions in patients and controls
    • Derks EM, Allardyce J, Boks MP, Vermunt JK, Hijman R, Ophoff RA, et al. Kraepelin was right: a latent class analysis of symptom dimensions in patients and controls. Schizophr Bull (2012) 38:495-505. doi:10.1093/schbul/sbq103
    • (2012) Schizophr Bull , vol.38 , pp. 495-505
    • Derks, E.M.1    Allardyce, J.2    Boks, M.P.3    Vermunt, J.K.4    Hijman, R.5    Ophoff, R.A.6
  • 22
    • 84872078563 scopus 로고    scopus 로고
    • DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses
    • Regier DA, Narrow WE, Clarke DE, Kraemer HC, Kuramoto SJ, Kuhl EA, et al. DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses. Am J Psychiatry (2013) 170:59-70. doi:10.1176/appi.ajp.2012.12070999
    • (2013) Am J Psychiatry , vol.170 , pp. 59-70
    • Regier, D.A.1    Narrow, W.E.2    Clarke, D.E.3    Kraemer, H.C.4    Kuramoto, S.J.5    Kuhl, E.A.6
  • 23
    • 0015294072 scopus 로고
    • Quantification of agreement in multiple psychiatric diagnosis
    • Fleiss JL, Spitzer RL, Endicott J, Cohen J. Quantification of agreement in multiple psychiatric diagnosis. Arch Gen Psychiatry (1972) 26:168-71. doi:10.1001/archpsyc.1972.01750200072015
    • (1972) Arch Gen Psychiatry , vol.26 , pp. 168-171
    • Fleiss, J.L.1    Spitzer, R.L.2    Endicott, J.3    Cohen, J.4
  • 24
    • 0025871056 scopus 로고
    • High interrater reliability for the structured clinical interview for DSM-III-R axis I (SCID-I)
    • Skre I, Onstad S, Torgersen S, Kringlen E. High interrater reliability for the structured clinical interview for DSM-III-R axis I (SCID-I). Acta Psychiatr Scand (1991) 84:167-73. doi:10.1111/j.1600-0447.1991.tb03123.x
    • (1991) Acta Psychiatr Scand , vol.84 , pp. 167-173
    • Skre, I.1    Onstad, S.2    Torgersen, S.3    Kringlen, E.4
  • 25
    • 33751113321 scopus 로고    scopus 로고
    • Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
    • Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou SY, Nakamura K, et al. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage (2007) 34:235-42. doi:10.1016/j.neuroimage.2006.08.018
    • (2007) Neuroimage , vol.34 , pp. 235-242
    • Kawasaki, Y.1    Suzuki, M.2    Kherif, F.3    Takahashi, T.4    Zhou, S.Y.5    Nakamura, K.6
  • 26
    • 67649876638 scopus 로고    scopus 로고
    • The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?-a systematic review
    • Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, et al. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?-a systematic review. Curr Pharm Des (2009) 15:2535-49.
    • (2009) Curr Pharm Des , vol.15 , pp. 2535-2549
    • Smieskova, R.1    Fusar-Poli, P.2    Allen, P.3    Bendfeldt, K.4    Stieglitz, R.D.5    Drewe, J.6
  • 27
    • 79951853456 scopus 로고    scopus 로고
    • Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
    • Kasparek T, Thomaz CE, Sato JR, Schwarz D, Janousova E, Marecek R, et al. Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects. Psychiatry Res (2011) 191:174-81. doi:10.1016/j.pscychresns.2010.09.016
    • (2011) Psychiatry Res , vol.191 , pp. 174-181
    • Kasparek, T.1    Thomaz, C.E.2    Sato, J.R.3    Schwarz, D.4    Janousova, E.5    Marecek, R.6
  • 28
    • 84861498787 scopus 로고    scopus 로고
    • Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression
    • Mourão-Miranda J, Almeida JR, Hassel S, de Oliveira L, Versace A, Marquand AF, et al. Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord (2012) 14:451-60. doi:10.1111/j.1399-5618.2012.01019.x
    • (2012) Bipolar Disord , vol.14 , pp. 451-460
    • Mourão-Miranda, J.1    Almeida, J.R.2    Hassel, S.3    de Oliveira, L.4    Versace, A.5    Marquand, A.F.6
  • 30
    • 84964672549 scopus 로고    scopus 로고
    • Multi-center machine learning in imaging psychiatry: a meta-model approach
    • in review).
    • Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Kašpárek T, et al. Multi-center machine learning in imaging psychiatry: a meta-model approach. (in review).
    • Dluhoš, P.1    Schwarz, D.2    Cahn, W.3    van Haren, N.4    Kahn, R.5    Kašpárek, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.