-
1
-
-
84939987420
-
Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies
-
Kambeitz J, Kambeitz-Ilankovic L, Leucht S, Wood S, Davatzikos C, Malchow B, et al. Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology (2015) 40:1742-51. doi: 10.1038/npp.2015.22
-
(2015)
Neuropsychopharmacology
, vol.40
, pp. 1742-1751
-
-
Kambeitz, J.1
Kambeitz-Ilankovic, L.2
Leucht, S.3
Wood, S.4
Davatzikos, C.5
Malchow, B.6
-
2
-
-
84902177268
-
Identifying endophenotypes of autism: a multivariate approach
-
Segovia F, Holt R, Spencer M, Górriz JM, Ramírez J, Puntonet CG, et al. Identifying endophenotypes of autism: a multivariate approach. Front Comput Neurosci (2014) 8:60. doi:10.3389/fncom.2014.00060
-
(2014)
Front Comput Neurosci
, vol.8
, pp. 60
-
-
Segovia, F.1
Holt, R.2
Spencer, M.3
Górriz, J.M.4
Ramírez, J.5
Puntonet, C.G.6
-
3
-
-
84902213440
-
Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD
-
Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, et al. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp (2014) 35:3083-94. doi:10.1002/hbm.22386
-
(2014)
Hum Brain Mapp
, vol.35
, pp. 3083-3094
-
-
Hart, H.1
Chantiluke, K.2
Cubillo, A.I.3
Smith, A.B.4
Simmons, A.5
Brammer, M.J.6
-
4
-
-
84884243434
-
Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
-
Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage (2014) 84:299-306. doi:10.1016/j.neuroimage.2013.08.053
-
(2014)
Neuroimage
, vol.84
, pp. 299-306
-
-
Schnack, H.G.1
Nieuwenhuis, M.2
van Haren, N.E.3
Abramovic, L.4
Scheewe, T.W.5
Brouwer, R.M.6
-
5
-
-
84859260848
-
Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study
-
Mourao-Miranda J, Reinders AA, Rocha-Rego V, Lappin J, Rondina J, Morgan C, et al. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol Med (2012) 42:1037-47. doi:10.1017/S0033291711002005
-
(2012)
Psychol Med
, vol.42
, pp. 1037-1047
-
-
Mourao-Miranda, J.1
Reinders, A.A.2
Rocha-Rego, V.3
Lappin, J.4
Rondina, J.5
Morgan, C.6
-
6
-
-
84925596778
-
Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification
-
Kambeitz-Ilankovic L, Meisenzahl EM, Cabral C, von Saldern S, Kambeitz J, Falkai P, et al. Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification. Schizophr Res (2015). doi:10.1016/j.schres.2015.03.005
-
(2015)
Schizophr Res
-
-
Kambeitz-Ilankovic, L.1
Meisenzahl, E.M.2
Cabral, C.3
von Saldern, S.4
Kambeitz, J.5
Falkai, P.6
-
7
-
-
84869056209
-
Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification
-
Koutsouleris N, Davatzikos C, Bottlender R, Patschurek-Kliche K, Scheuerecker J, Decker P, et al. Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification. Schizophr Bull (2012) 38:1200-15. doi:10.1093/schbul/sbr037
-
(2012)
Schizophr Bull
, vol.38
, pp. 1200-1215
-
-
Koutsouleris, N.1
Davatzikos, C.2
Bottlender, R.3
Patschurek-Kliche, K.4
Scheuerecker, J.5
Decker, P.6
-
8
-
-
84878825019
-
Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition
-
Borgwardt S, Koutsouleris N, Aston J, Studerus E, Smieskova R, Riecher-Rössler A, et al. Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophr Bull (2013) 39:1105-14. doi:10.1093/schbul/sbs095
-
(2013)
Schizophr Bull
, vol.39
, pp. 1105-1114
-
-
Borgwardt, S.1
Koutsouleris, N.2
Aston, J.3
Studerus, E.4
Smieskova, R.5
Riecher-Rössler, A.6
-
9
-
-
84885164024
-
Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level
-
Zarogianni E, Moorhead TW, Lawrie SM. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin (2013) 3:279-89. doi:10.1016/j.nicl.2013.09.003
-
(2013)
Neuroimage Clin
, vol.3
, pp. 279-289
-
-
Zarogianni, E.1
Moorhead, T.W.2
Lawrie, S.M.3
-
10
-
-
84857000430
-
Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
-
Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev (2012) 36:1140-52. doi:10.1016/j.neubiorev.2012.01.004
-
(2012)
Neurosci Biobehav Rev
, vol.36
, pp. 1140-1152
-
-
Orrù, G.1
Pettersson-Yeo, W.2
Marquand, A.F.3
Sartori, G.4
Mechelli, A.5
-
11
-
-
84861187769
-
Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
-
Nieuwenhuis M, van Haren NE, Hulshoff Pol HE, Cahn W, Kahn RS, Schnack HG. Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage (2012) 61:606-12. doi:10.1016/j.neuroimage.2012.03.079
-
(2012)
Neuroimage
, vol.61
, pp. 606-612
-
-
Nieuwenhuis, M.1
van Haren, N.E.2
Hulshoff Pol, H.E.3
Cahn, W.4
Kahn, R.S.5
Schnack, H.G.6
-
12
-
-
84897126113
-
Psychiatric disorders: diagnosis to therapy
-
Krystall JH, State MW. Psychiatric disorders: diagnosis to therapy. Cell (2014) 157:201-14. doi:10.1016/j.cell.2014.02.042
-
(2014)
Cell
, vol.157
, pp. 201-214
-
-
Krystall, J.H.1
State, M.W.2
-
13
-
-
84979866940
-
Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis
-
Zhang T, Koutsouleris N, Meisenzahl E, Davatzikos C. Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis. Schizophr Bull (2015) 41:74-84. doi:10.1093/schbul/sbu136
-
(2015)
Schizophr Bull
, vol.41
, pp. 74-84
-
-
Zhang, T.1
Koutsouleris, N.2
Meisenzahl, E.3
Davatzikos, C.4
-
14
-
-
84929505685
-
Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
-
Janousova E, Schwarz D, Kasparek T. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatry Res (2015) 232:237-49. doi:10.1016/j.pscychresns.2015.03.004
-
(2015)
Psychiatry Res
, vol.232
, pp. 237-249
-
-
Janousova, E.1
Schwarz, D.2
Kasparek, T.3
-
15
-
-
80051781186
-
Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia
-
Castro E, Martínez-Ramón M, Pearlson G, Sui J, Calhoun VD. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage (2011) 58:526-36. doi:10.1016/j.neuroimage.2011.06.044
-
(2011)
Neuroimage
, vol.58
, pp. 526-536
-
-
Castro, E.1
Martínez-Ramón, M.2
Pearlson, G.3
Sui, J.4
Calhoun, V.D.5
-
16
-
-
70349313293
-
A unified framework for MR based disease classification
-
Pohl KM, Sabuncu MR. A unified framework for MR based disease classification. Inf Process Med Imaging (2009) 21:300-13. doi:10.1007/978-3-642-02498-6_25
-
(2009)
Inf Process Med Imaging
, vol.21
, pp. 300-313
-
-
Pohl, K.M.1
Sabuncu, M.R.2
-
17
-
-
84973344384
-
Accelerated brain-aging in schizophrenia: a longitudinal pattern recognition study
-
Schnack HG, van Haren NEM, Nieuwenhuis M, Hulshoff Pol HE, Cahn W, Kahn RS. Accelerated brain-aging in schizophrenia: a longitudinal pattern recognition study. Am J Psychiatry (2016). doi:10.1176/appi.ajp.2015.15070922
-
(2016)
Am J Psychiatry
-
-
Schnack, H.G.1
van Haren, N.E.M.2
Nieuwenhuis, M.3
Hulshoff Pol, H.E.4
Cahn, W.5
Kahn, R.S.6
-
18
-
-
73649110589
-
Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain variables
-
Takayanagi Y, Kawasaki Y, Nakamura K, Takahashi T, Orikabe L, Toyoda E, et al. Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain variables. Prog Neuropsychopharmacol Biol Psychiatry (2010) 34:10-7. doi:10.1016/j.pnpbp.2009.09.004
-
(2010)
Prog Neuropsychopharmacol Biol Psychiatry
, vol.34
, pp. 10-17
-
-
Takayanagi, Y.1
Kawasaki, Y.2
Nakamura, K.3
Takahashi, T.4
Orikabe, L.5
Toyoda, E.6
-
19
-
-
84892424989
-
Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging
-
Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging. Front Psychiatry (2013) 4:95. doi:10.3389/fpsyt.2013.00095
-
(2013)
Front Psychiatry
, vol.4
, pp. 95
-
-
Iwabuchi, S.J.1
Liddle, P.F.2
Palaniyappan, L.3
-
20
-
-
0003577917
-
Statistical Power Analysis for the Behavioral Sciences
-
2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates
-
Cohen. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates (1988).
-
(1988)
-
-
Cohen.1
-
21
-
-
84860140138
-
Kraepelin was right: a latent class analysis of symptom dimensions in patients and controls
-
Derks EM, Allardyce J, Boks MP, Vermunt JK, Hijman R, Ophoff RA, et al. Kraepelin was right: a latent class analysis of symptom dimensions in patients and controls. Schizophr Bull (2012) 38:495-505. doi:10.1093/schbul/sbq103
-
(2012)
Schizophr Bull
, vol.38
, pp. 495-505
-
-
Derks, E.M.1
Allardyce, J.2
Boks, M.P.3
Vermunt, J.K.4
Hijman, R.5
Ophoff, R.A.6
-
22
-
-
84872078563
-
DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses
-
Regier DA, Narrow WE, Clarke DE, Kraemer HC, Kuramoto SJ, Kuhl EA, et al. DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses. Am J Psychiatry (2013) 170:59-70. doi:10.1176/appi.ajp.2012.12070999
-
(2013)
Am J Psychiatry
, vol.170
, pp. 59-70
-
-
Regier, D.A.1
Narrow, W.E.2
Clarke, D.E.3
Kraemer, H.C.4
Kuramoto, S.J.5
Kuhl, E.A.6
-
23
-
-
0015294072
-
Quantification of agreement in multiple psychiatric diagnosis
-
Fleiss JL, Spitzer RL, Endicott J, Cohen J. Quantification of agreement in multiple psychiatric diagnosis. Arch Gen Psychiatry (1972) 26:168-71. doi:10.1001/archpsyc.1972.01750200072015
-
(1972)
Arch Gen Psychiatry
, vol.26
, pp. 168-171
-
-
Fleiss, J.L.1
Spitzer, R.L.2
Endicott, J.3
Cohen, J.4
-
24
-
-
0025871056
-
High interrater reliability for the structured clinical interview for DSM-III-R axis I (SCID-I)
-
Skre I, Onstad S, Torgersen S, Kringlen E. High interrater reliability for the structured clinical interview for DSM-III-R axis I (SCID-I). Acta Psychiatr Scand (1991) 84:167-73. doi:10.1111/j.1600-0447.1991.tb03123.x
-
(1991)
Acta Psychiatr Scand
, vol.84
, pp. 167-173
-
-
Skre, I.1
Onstad, S.2
Torgersen, S.3
Kringlen, E.4
-
25
-
-
33751113321
-
Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
-
Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou SY, Nakamura K, et al. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage (2007) 34:235-42. doi:10.1016/j.neuroimage.2006.08.018
-
(2007)
Neuroimage
, vol.34
, pp. 235-242
-
-
Kawasaki, Y.1
Suzuki, M.2
Kherif, F.3
Takahashi, T.4
Zhou, S.Y.5
Nakamura, K.6
-
26
-
-
67649876638
-
The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?-a systematic review
-
Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, et al. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?-a systematic review. Curr Pharm Des (2009) 15:2535-49.
-
(2009)
Curr Pharm Des
, vol.15
, pp. 2535-2549
-
-
Smieskova, R.1
Fusar-Poli, P.2
Allen, P.3
Bendfeldt, K.4
Stieglitz, R.D.5
Drewe, J.6
-
27
-
-
79951853456
-
Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
-
Kasparek T, Thomaz CE, Sato JR, Schwarz D, Janousova E, Marecek R, et al. Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects. Psychiatry Res (2011) 191:174-81. doi:10.1016/j.pscychresns.2010.09.016
-
(2011)
Psychiatry Res
, vol.191
, pp. 174-181
-
-
Kasparek, T.1
Thomaz, C.E.2
Sato, J.R.3
Schwarz, D.4
Janousova, E.5
Marecek, R.6
-
28
-
-
84861498787
-
Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression
-
Mourão-Miranda J, Almeida JR, Hassel S, de Oliveira L, Versace A, Marquand AF, et al. Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord (2012) 14:451-60. doi:10.1111/j.1399-5618.2012.01019.x
-
(2012)
Bipolar Disord
, vol.14
, pp. 451-460
-
-
Mourão-Miranda, J.1
Almeida, J.R.2
Hassel, S.3
de Oliveira, L.4
Versace, A.5
Marquand, A.F.6
-
30
-
-
84964672549
-
Multi-center machine learning in imaging psychiatry: a meta-model approach
-
in review).
-
Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Kašpárek T, et al. Multi-center machine learning in imaging psychiatry: a meta-model approach. (in review).
-
-
-
Dluhoš, P.1
Schwarz, D.2
Cahn, W.3
van Haren, N.4
Kahn, R.5
Kašpárek, T.6
|