-
1
-
-
0032329779
-
A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis–Hastings algorithm
-
Arminger, G., & Muthen, B., (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis–Hastings algorithm. Psychometrika, 63, 271–300. doi:10.1007/BF02294856
-
(1998)
Psychometrika
, vol.63
, pp. 271-300
-
-
Arminger, G.1
Muthen, B.2
-
2
-
-
84865304109
-
Bayesian analysis using Mplus: Technical implementation
-
Retrieved from
-
Asparouhov, T., & Muthén, B., (2010). Bayesian analysis using Mplus: Technical implementation (Technical report, Version 3). Retrieved from http://statmodel.com/download/Bayes3.pdf
-
(2010)
Technical report, Version 3
-
-
Asparouhov, T.1
Muthén, B.2
-
3
-
-
84991803932
-
General random effect latent variable modeling: Random subjects, items, contexts, and parameters
-
Charlotte, NC: Information Age, &,. In, &, (Eds
-
Asparouhov, T., & Muthén, B., (2016). General random effect latent variable modeling: Random subjects, items, contexts, and parameters. In J. R., Harring, L. M., Stapleton, & S. N., Beretvas (Eds.), Advances in multilevel modeling for educational research: Addressing practical issues found in real-world applications (pp. 163–192). Charlotte, NC: Information Age.
-
(2016)
Advances in multilevel modeling for educational research: Addressing practical issues found in real-world applications
, pp. 163-192
-
-
Asparouhov, T.1
Muthén, B.2
Harring, J.R.3
Stapleton, L.M.4
Beretvas, S.N.5
-
5
-
-
33847083094
-
A comparison of Bayesian and likelihood-based methods for fitting multilevel models
-
Browne, W., & Draper, D., (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514. doi:10.1214/06-BA117
-
(2006)
Bayesian Analysis
, vol.1
, pp. 473-514
-
-
Browne, W.1
Draper, D.2
-
6
-
-
0000014224
-
Linear smoothers and additive models
-
Buja, A., Hastie, T. J., & Tibshirani, R., (1989). Linear smoothers and additive models. Annals of Statistics, 17, 453–510. doi:10.1214/aos/1176347115
-
(1989)
Annals of Statistics
, vol.17
, pp. 453-510
-
-
Buja, A.1
Hastie, T.J.2
Tibshirani, R.3
-
7
-
-
70450277983
-
Deviance information criteria for missing data models
-
Celeux, G., Forbes, F., Robert, C. P., & Titterington, D. M., (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1, 651–673. doi:10.1214/06-BA122
-
(2006)
Bayesian Analysis
, vol.1
, pp. 651-673
-
-
Celeux, G.1
Forbes, F.2
Robert, C.P.3
Titterington, D.M.4
-
8
-
-
21344474305
-
Accelerating Monte Carlo Markov Chain Convergence for Cumulative-Link Generalized Linear Models
-
Cowles, M. K., (1996). Accelerating Monte Carlo Markov Chain Convergence for Cumulative-Link Generalized Linear Models. Statistics and Computing, 6, 101–111.
-
(1996)
Statistics and Computing
, vol.6
, pp. 101-111
-
-
Cowles, M.K.1
-
9
-
-
84931416754
-
No need to be discrete: A method for continuous time mediation analysis
-
Deboeck, P., & Preacher, K., (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling, 23, 61–75. doi:10.1080/10705511.2014.973960
-
(2016)
Structural Equation Modeling
, vol.23
, pp. 61-75
-
-
Deboeck, P.1
Preacher, K.2
-
10
-
-
0000193110
-
Time series modelling and interpretation
-
Granger, C. W. J., & Morris, M. J., (1976). Time series modelling and interpretation. Journal of the Royal Statistical Society, Series A, 139, 246–257. doi:10.2307/2345178
-
(1976)
Journal of the Royal Statistical Society, Series A
, vol.139
, pp. 246-257
-
-
Granger, C.W.J.1
Morris, M.J.2
-
11
-
-
0004296209
-
-
7th ed., Upper Saddle River, NJ: Prentice Hall
-
Greene, W. H., (2014). Econometric analysis (7th ed.). Upper Saddle River, NJ: Prentice Hall.
-
(2014)
Econometric analysis
-
-
Greene, W.H.1
-
12
-
-
13444267778
-
Conditions for the equivalence of the autoregressive latent trajectory model and a latent growth curve model with autoregressive disturbances
-
Hamaker, E. L., (2005). Conditions for the equivalence of the autoregressive latent trajectory model and a latent growth curve model with autoregressive disturbances. Sociological Methods & Research, 33, 404–416. doi:10.1177/0049124104270220
-
(2005)
Sociological Methods & Research
, vol.33
, pp. 404-416
-
-
Hamaker, E.L.1
-
13
-
-
85044205381
-
At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study
-
Manuscript
-
Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B., (2017). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Manuscript submitted for publication.
-
(2017)
submitted for publication
-
-
Hamaker, E.L.1
Asparouhov, T.2
Brose, A.3
Schmiedek, F.4
Muthén, B.5
-
14
-
-
84926631094
-
To center or not to center? Investigating inertia with a multilevel autoregressive model
-
Hamaker, E. L., & Grasman, R. P. P. P., (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492. doi:10.3389/fpsyg.2014.01492
-
(2015)
Frontiers in Psychology
, vol.5
, pp. 1492
-
-
Hamaker, E.L.1
Grasman, R.P.P.P.2
-
15
-
-
57749113638
-
Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling
-
Jahng, S., Wood, P. K., & Trull, T. J., (2008). Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling. Psychological Methods, 13, 354–375. doi:10.1037/a0014173
-
(2008)
Psychological Methods
, vol.13
, pp. 354-375
-
-
Jahng, S.1
Wood, P.K.2
Trull, T.J.3
-
16
-
-
84931470688
-
A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance
-
Jongerling, J., Laurenceau, J. P., & Hamaker, E., (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334–349. doi:10.1080/00273171.2014.1003772
-
(2015)
Multivariate Behavioral Research
, vol.50
, pp. 334-349
-
-
Jongerling, J.1
Laurenceau, J.P.2
Hamaker, E.3
-
17
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
Kalman, R. E., (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.
-
(1960)
Journal of Basic Engineering
, vol.82
, pp. 35-45
-
-
Kalman, R.E.1
-
19
-
-
48449087653
-
The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies
-
Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B., (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13, 203–229. doi:10.1037/a0012869
-
(2008)
Psychological Methods
, vol.13
, pp. 203-229
-
-
Lüdtke, O.1
Marsh, H.W.2
Robitzsch, A.3
Trautwein, U.4
Asparouhov, T.5
Muthén, B.6
-
20
-
-
0000312259
-
A dynamic factor model for the analysis of multivariate time series
-
Molenaar, P. C. M., (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181–202. doi:10.1007/BF02294246
-
(1985)
Psychometrika
, vol.50
, pp. 181-202
-
-
Molenaar, P.C.M.1
-
21
-
-
85013042307
-
Equivalent dynamic models
-
Molenaar, P. C. M., (2017). Equivalent dynamic models. Multivariate Behavioral Research, 52, 242–258. doi:10.1080/00273171.2016.1277681
-
(2017)
Multivariate Behavioral Research
, vol.52
, pp. 242-258
-
-
Molenaar, P.C.M.1
-
23
-
-
83755185629
-
A hierarchical latent stochastic differential equation model for affective dynamics
-
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J., (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16, 468–490. doi:10.1037/a0024375
-
(2011)
Psychological Methods
, vol.16
, pp. 468-490
-
-
Oravecz, Z.1
Tuerlinckx, F.2
Vandekerckhove, J.3
-
24
-
-
0003967354
-
-
2nd, Thousand Oaks, CA: Sage, &, ed
-
Raudenbush, S. W., & Bryk, A. S., (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.
-
(2002)
Hierarchical linear models: Applications and data analysis methods
-
-
Raudenbush, S.W.1
Bryk, A.S.2
-
25
-
-
85057918727
-
Incorporating measurement error in n = 1 psychological autoregressive modeling
-
Schuurman, N., Houtveen, J., & Hamaker, E., (2015). Incorporating measurement error in n = 1 psychological autoregressive modeling. Frontiers in Psychology, 6, 1038. doi:10.3389/fpsyg.2015.01038
-
(2015)
Frontiers in Psychology
, vol.6
, pp. 1038
-
-
Schuurman, N.1
Houtveen, J.2
Hamaker, E.3
-
26
-
-
0036435040
-
Bayesian measures of model complexity and fit
-
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. Series B. 64, 583–639
-
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B. 64, 583–639.
-
(2002)
Journal of the Royal Statistical Society
-
-
-
27
-
-
84919421716
-
The role of ambulatory assessment in psychological science
-
Trull, T., & Ebner-Priemer, U., (2014). The role of ambulatory assessment in psychological science. Current Directions in Psychological Science, 23, 466–470. doi:10.1177/0963721414550706
-
(2014)
Current Directions in Psychological Science
, vol.23
, pp. 466-470
-
-
Trull, T.1
Ebner-Priemer, U.2
-
28
-
-
21644476631
-
Conditional Akaike information for mixed-effects models
-
Vaida, F., & Blanchard, S., (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92, 351–370. doi:10.1093/biomet/92.2.351
-
(2005)
Biometrika
, vol.92
, pp. 351-370
-
-
Vaida, F.1
Blanchard, S.2
-
29
-
-
84872514308
-
Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes
-
Voelkle, M. C., & Oud, J. H. L., (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66, 103–126. doi:10.1111/j.2044-8317.2012.02043.x
-
(2013)
British Journal of Mathematical and Statistical Psychology
, vol.66
, pp. 103-126
-
-
Voelkle, M.C.1
Oud, J.H.L.2
-
30
-
-
47949098250
-
Comparisons of four methods for estimating a dynamic factor model
-
Zhang, Z., Hamaker, E., & Nesselroade, J., (2008). Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling, 15, 377–402. doi:10.1080/10705510802154281
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 377-402
-
-
Zhang, Z.1
Hamaker, E.2
Nesselroade, J.3
-
31
-
-
47949126160
-
Bayesian estimation of categorical dynamic factor models
-
Zhang, Z., & Nesselroade, J., (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42, 729–756. doi:10.1080/00273170701715998
-
(2007)
Multivariate Behavioral Research
, vol.42
, pp. 729-756
-
-
Zhang, Z.1
Nesselroade, J.2
|