-
1
-
-
38949102073
-
Building better batteries
-
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
2
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science 334, 928–935 (2011).
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.-M.3
-
3
-
-
84883289089
-
A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
-
Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao, Y.-S. Hu, H. Li, X.-Q. Yang, L. Chen, X. Huang, A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2365
-
-
Wang, Y.1
Yu, X.2
Xu, S.3
Bai, J.4
Xiao, R.5
Hu, Y.-S.6
Li, H.7
Yang, X.-Q.8
Chen, L.9
Huang, X.10
-
4
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2338-2360
-
-
Pan, H.1
Hu, Y.-S.2
Chen, L.3
-
5
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries
-
S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.-W.1
Seo, D.-H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
6
-
-
84873405642
-
Sodium-ion batteries
-
M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
7
-
-
79960898109
-
Challenges for Na-ion negative electrodes
-
V. L. Chevrier, G. Ceder, Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011).
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1011-A1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
8
-
-
0033751756
-
High capacity anode materials for rechargeable sodium-ion batteries
-
D. A. Stevens, J. R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000).
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
9
-
-
80054830129
-
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
-
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, K. Gotoh, K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 3859-3867
-
-
Komaba, S.1
Murata, W.2
Ishikawa, T.3
Yabuuchi, N.4
Ozeki, T.5
Nakayama, T.6
Gotoh, K.7
Fujiwara, K.8
-
10
-
-
84915811922
-
Amorphous mono-dispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
-
Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.-S. Hu, H. Li, L. Chen, X. Huang, Amorphous mono-dispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 3, 71–77 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 71-77
-
-
Li, Y.1
Xu, S.2
Wu, X.3
Yu, J.4
Wang, Y.5
Hu, Y.-S.6
Li, H.7
Chen, L.8
Huang, X.9
-
12
-
-
84885194615
-
7 for room-temperature sodium-ion batteries
-
7 for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 1186–1194 (2013).
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1186-1194
-
-
Pan, H.1
Lu, X.2
Yu, X.3
Hu, Y.-S.4
Li, H.5
Yang, X.-Q.6
Chen, L.7
-
13
-
-
84878717290
-
12 anodes for room-temperature sodium-ion batteries
-
12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1870
-
-
Sun, Y.1
Zhao, L.2
Pan, H.3
Lu, X.4
Gu, L.5
Hu, Y.-S.6
Li, H.7
Armand, M.8
Ikuhara, Y.9
Chen, L.10
Huang, X.11
-
16
-
-
58849095406
-
Conjugated dicarboxylate anodes for Li-ion batteries
-
M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot, J.-M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8, 120–125 (2009).
-
(2009)
Nat. Mater.
, vol.8
, pp. 120-125
-
-
Armand, M.1
Grugeon, S.2
Vezin, H.3
Laruelle, S.4
Ribière, P.5
Poizot, P.6
Tarascon, J.-M.7
-
17
-
-
84867285079
-
Organic electrode materials for rechargeable lithium batteries
-
Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 742-769
-
-
Liang, Y.1
Tao, Z.2
Chen, J.3
-
18
-
-
84882700742
-
Towards sustainable and versatile energy storage devices: An overview of organic electrode materials
-
Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2280-2301
-
-
Song, Z.1
Zhou, H.2
-
19
-
-
77955467556
-
Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries
-
R.-H. Zeng, X.-p. Li, Y.-c. Qiu, W.-s. Li, J. Yi, D.-s. Lu, C.-l. Tan, M.-q. Xu, Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries. Electrochem. Commun. 12, 1253–1256 (2010).
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1253-1256
-
-
Zeng, R.-H.1
Li, X.-P.2
Qiu, Y.-C.3
Li, W.-S.4
Yi, J.5
Lu, D.-S.6
Tan, C.-L.7
Xu, M.-Q.8
-
20
-
-
58149478134
-
Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries
-
Z. Song, H. Zhan, Y. Zhou, Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 4, 448–450 (2009).
-
(2009)
Chem. Commun.
, vol.4
, pp. 448-450
-
-
Song, Z.1
Zhan, H.2
Zhou, Y.3
-
21
-
-
84874607509
-
Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device
-
K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou, S. Kaskel, Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 4, 1485 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1485
-
-
Sakaushi, K.1
Hosono, E.2
Nickerl, G.3
Gemming, T.4
Zhou, H.5
Kaskel, S.6
-
22
-
-
84884225038
-
A low cost, all-organic Na-ion battery based on polymeric cathode and anode
-
W. Deng, X. Liang, X. Wu, J. Qian, Y. Cao, X. Ai, J. Feng, H. Yang, A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 2671
-
-
Deng, W.1
Liang, X.2
Wu, X.3
Qian, J.4
Cao, Y.5
Ai, X.6
Feng, J.7
Yang, H.8
-
23
-
-
84892572739
-
Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries
-
M. Yao, K. Kuratani, T. Kojima, N. Takeichi, H. Senoh, T. Kiyobayashi, Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries. Sci. Rep. 4, 3650 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 3650
-
-
Yao, M.1
Kuratani, K.2
Kojima, T.3
Takeichi, N.4
Senoh, H.5
Kiyobayashi, T.6
-
24
-
-
84876699462
-
Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries
-
Y. Liang, P. Zhang, J. Chen, Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 4, 1330–1337 (2013).
-
(2013)
Chem. Sci.
, vol.4
, pp. 1330-1337
-
-
Liang, Y.1
Zhang, P.2
Chen, J.3
-
25
-
-
84923314849
-
Biologically inspired pteridine redox centres for rechargeable batteries
-
J. Hong, M. Lee, B. Lee, D.-H. Seo, C. B. Park, K. Kang, Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5335
-
-
Hong, J.1
Lee, M.2
Lee, B.3
Seo, D.-H.4
Park, C.B.5
Kang, K.6
-
26
-
-
77956472617
-
High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries
-
M. Yao, H. Senoh, S.-i. Yamazaki, Z. Siroma, T. Sakai, K. Yasuda, High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. J. Power Sources 195, 8336–8340 (2010).
-
(2010)
J. Power Sources
, vol.195
, pp. 8336-8340
-
-
Yao, M.1
Senoh, H.2
Yamazaki, S.-I.3
Siroma, Z.4
Sakai, T.5
Yasuda, K.6
-
27
-
-
84867316021
-
4) as high performance anode material for low-cost room-temperature sodium-ion battery
-
4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2, 962–965 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 962-965
-
-
Zhao, L.1
Zhao, J.2
Hu, Y.-S.3
Li, H.4
Zhou, Z.5
Armand, M.6
Chen, L.7
-
28
-
-
84864416638
-
An energy storage principle using bipolar porous polymeric frameworks
-
K. Sakaushi, G. Nickerl, F. M. Wisser, D. Nishio-Hamane, E. Hosono, H. Zhou, S. Kaskel, J. Eckert, An energy storage principle using bipolar porous polymeric frameworks. Angew. Chem. Int. Ed. 51, 7850–7854 (2012).
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 7850-7854
-
-
Sakaushi, K.1
Nickerl, G.2
Wisser, F.M.3
Nishio-Hamane, D.4
Hosono, E.5
Zhou, H.6
Kaskel, S.7
Eckert, J.8
-
30
-
-
0030190741
-
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
-
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
-
(1996)
Comput. Mater. Sci.
, vol.6
, pp. 15-50
-
-
Kresse, G.1
Furthmüller, J.2
-
31
-
-
25744460922
-
Projector augmented-wave method
-
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994).
-
(1994)
Phys. Rev. B Condens. Matter
, vol.50
, pp. 17953-17979
-
-
Blöchl, P.E.1
-
32
-
-
4243943295
-
Generalized gradient approximation made simple
-
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
33
-
-
0036061897
-
4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries
-
4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002).
-
(2002)
Chem. Mater.
, vol.14
, pp. 2847-2848
-
-
Alcántara, R.1
Jaraba, M.2
Lavela, P.3
Tirado, J.L.4
-
34
-
-
0023382691
-
The role of conductive polymers in alkali-metal secondary electrodes
-
T. R. Jow, L. W. Shacklette, M. Maxfield, D. Vernick, The role of conductive polymers in alkali-metal secondary electrodes. J. Electrochem. Soc. 134, 1730–1733 (1987).
-
(1987)
J. Electrochem. Soc.
, vol.134
, pp. 1730-1733
-
-
Jow, T.R.1
Shacklette, L.W.2
Maxfield, M.3
Vernick, D.4
-
35
-
-
84863230428
-
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
-
L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321–3323 (2012).
-
(2012)
Chem. Commun.
, vol.48
, pp. 3321-3323
-
-
Xiao, L.1
Cao, Y.2
Xiao, J.3
Wang, W.4
Kovarik, L.5
Nie, Z.6
Liu, J.7
-
36
-
-
36449000062
-
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
-
G. J. Martyna, M. L. Klein, M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 2635-2643
-
-
Martyna, G.J.1
Klein, M.L.2
Tuckerman, M.3
|