-
1
-
-
0028079908
-
-
Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature (London) 372, 532 (1994).
-
(1994)
Nature (London)
, vol.372
, pp. 532
-
-
Maeno, Y.1
Hashimoto, H.2
Yoshida, K.3
Nishizaki, S.4
Fujita, T.5
Bednorz, J.G.6
Lichtenberg, F.7
-
2
-
-
3643123547
-
-
A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 80, 161 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 161
-
-
Mackenzie, A.P.1
Haselwimmer, R.K.W.2
Tyler, A.W.3
Lonzarich, G.G.4
Mori, Y.5
Nishizaki, S.6
Maeno, Y.7
-
5
-
-
18744423813
-
-
G. Baskaran, Physica B 223-224, 490 (1996).
-
(1996)
Physica B
, vol.223-224
, pp. 490
-
-
Baskaran, G.1
-
6
-
-
0032491010
-
-
G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature (London) 394, 558 (1998).
-
(1998)
Nature (London)
, vol.394
, pp. 558
-
-
Luke, G.M.1
Fudamoto, Y.2
Kojima, K.M.3
Larkin, M.I.4
Merrin, J.5
Nachumi, B.6
Uemura, Y.J.7
Maeno, Y.8
Mao, Z.Q.9
Mori, Y.10
Nakamura, H.11
Sigrist, M.12
-
7
-
-
0032542297
-
-
K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z.Q. Mao, Y. Mori, and Y. Maeno, Nature (London) 396, 658 (1998);
-
(1998)
Nature (London)
, vol.396
, pp. 658
-
-
Ishida, K.1
Mukuda, H.2
Kitaoka, Y.3
Asayama, K.4
Mao, Z.Q.5
Mori, Y.6
Maeno, Y.7
-
8
-
-
0035117227
-
-
K. Ishida, H. Mukuda, Y. Kitaoka, Z.Q. Mao, H. Fukazawa, and Y. Maeno, Phys. Rev. B 63, 060507(R) (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 60507
-
-
Ishida, K.1
Mukuda, H.2
Kitaoka, Y.3
Mao, Z.Q.4
Fukazawa, H.5
Maeno, Y.6
-
9
-
-
4243120956
-
-
R.A. Fisher, S. Kim, B.F. Woodfield, N.E. Phillips, L. Taillefer, K. Hasselbach, J. Flouquet, A.L. Giorgi, and J.L. Smith, Phys. Rev. Lett. 62, 1411 (1989);
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 1411
-
-
Fisher, R.A.1
Kim, S.2
Woodfield, B.F.3
Phillips, N.E.4
Taillefer, L.5
Hasselbach, K.6
Flouquet, J.7
Giorgi, A.L.8
Smith, J.L.9
-
12
-
-
0000300940
-
-
K. Ishida, H. Mukuda, Y. Kitaoka, Z.Q. Mao, Y. Mori, and Y. Maeno, Phys. Rev. Lett. 84, 5387 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 5387
-
-
Ishida, K.1
Mukuda, H.2
Kitaoka, Y.3
Mao, Z.Q.4
Mori, Y.5
Maeno, Y.6
-
13
-
-
0034315849
-
-
I. Bonalde, Brian D. Yanoff, M.B. Salamon, D.J. Van Harlingen, E.M.E. Chia, Z.Q. Mao, and Y. Maeno, Phys. Rev. Lett. 85, 4775 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4775
-
-
Bonalde, I.1
Yanoff, B.D.2
Salamon, M.B.3
Van Harlingen, D.J.4
Chia, E.M.E.5
Mao, Z.Q.6
Maeno, Y.7
-
14
-
-
0035911662
-
-
M.A. Tanatar, M. Suzuki, S. Nagai, Z.Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. Lett. 86, 2649 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2649
-
-
Tanatar, M.A.1
Suzuki, M.2
Nagai, S.3
Mao, Z.Q.4
Maeno, Y.5
Ishiguro, T.6
-
15
-
-
0035911747
-
-
K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. 86, 2653 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2653
-
-
Izawa, K.1
Takahashi, H.2
Yamaguchi, H.3
Matsuda, Y.4
Suzuki, M.5
Sasaki, T.6
Fukase, T.7
Yoshida, Y.8
Settai, R.9
Onuki, Y.10
-
16
-
-
0034506972
-
-
J.A. Duffy, S.M. Hayden, Y. Maeno, Z. Mao, J. Kulda, and G.J. McIntyre, Phys. Rev. Lett. 85, 5412 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 5412
-
-
Duffy, J.A.1
Hayden, S.M.2
Maeno, Y.3
Mao, Z.4
Kulda, J.5
McIntyre, G.J.6
-
17
-
-
0343390520
-
-
P.G. Kealey, T.M. Riseman, E.M. Forgan, L.M. Galvin, A.P. Mackenzie, S.L. Lee, D.McK. Paul, R. Cubitt, D.F. Agterberg, R. Heeb, Z.Q. Mao, and Y. Maeno, Phys. Rev. Lett. 84, 6094 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 6094
-
-
Kealey, P.G.1
Riseman, T.M.2
Forgan, E.M.3
Galvin, L.M.4
Mackenzie, A.P.5
Lee, S.L.6
Paul, D.M.K.7
Cubitt, R.8
Agterberg, D.F.9
Heeb, R.10
Mao, Z.Q.11
Maeno, Y.12
-
19
-
-
0000169763
-
-
Z.Q. Mao, Y. Maeno, S. NishiZaki, T. Akima, and T. Ishiguro, Phys. Rev. Lett. 84, 991 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 991
-
-
Mao, Z.Q.1
Maeno, Y.2
NishiZaki, S.3
Akima, T.4
Ishiguro, T.5
-
20
-
-
0035108740
-
-
M.A. Tanatar, S. Nagai, Z.Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. B 63, 064505 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 64505
-
-
Tanatar, M.A.1
Nagai, S.2
Mao, Z.Q.3
Maeno, Y.4
Ishiguro, T.5
-
22
-
-
0030182730
-
-
J.S. Gardner, G. Balakrishnan, D.McK. Paul, and C. Haworth, Physica C 265, 251 (1996).
-
(1996)
Physica C
, vol.265
, pp. 251
-
-
Gardner, J.S.1
Balakrishnan, G.2
Paul, D.M.K.3
Haworth, C.4
-
23
-
-
85038325384
-
-
The characteristic fields (formula presented) (formula presented) and (formula presented) have been defined using the real part of the ac susceptibility. These field positions do not always exactly coincide with the peaks in the imaginary part, but show reasonable agreement
-
The characteristic fields (formula presented) (formula presented) and (formula presented) have been defined using the real part of the ac susceptibility. These field positions do not always exactly coincide with the peaks in the imaginary part, but show reasonable agreement.
-
-
-
-
24
-
-
85038300575
-
-
Throughout the paper, we do not take into accout the demagnetization factor. The applied field almost fully penetrates at (formula presented) whilst we will later discuss the dependence of (formula presented) on the angle between the (formula presented) plane and the applied field. When we discuss the characteristic fields (formula presented) (formula presented) and (formula presented) all of which are close to (formula presented) the field is parallel to the platelike sample. The demagnetization effect is the least important in this field configuration
-
Throughout the paper, we do not take into accout the demagnetization factor. The applied field almost fully penetrates at (formula presented) whilst we will later discuss the dependence of (formula presented) on the angle between the (formula presented) plane and the applied field. When we discuss the characteristic fields (formula presented) (formula presented) and (formula presented) all of which are close to (formula presented) the field is parallel to the platelike sample. The demagnetization effect is the least important in this field configuration.
-
-
-
-
25
-
-
0030505764
-
-
K. Yoshida, Y. Maeno, S. Nishizaki, and T. Fujita, J. Phys. Soc. Jpn. 65, 2220 (1996).
-
(1996)
J. Phys. Soc. Jpn.
, vol.65
, pp. 2220
-
-
Yoshida, K.1
Maeno, Y.2
Nishizaki, S.3
Fujita, T.4
-
26
-
-
85038316257
-
-
K. Deguchi, M. A. Tanatar, Z. Q. Mao, T. Ishiguro, and Y. Maeno
-
K. Deguchi, M. A. Tanatar, Z. Q. Mao, T. Ishiguro, and Y. Maeno
-
-
-
-
32
-
-
0030149362
-
-
A.P. Mackenzie, S.R. Julian, A.J. Diver, G.G. Lonzarich, N.E. Hussey, Y. Maeno, S. Nishizaki, and T. Fujita, Physica C 263, 510 (1996).
-
(1996)
Physica C
, vol.263
, pp. 510
-
-
Mackenzie, A.P.1
Julian, S.R.2
Diver, A.J.3
Lonzarich, G.G.4
Hussey, N.E.5
Maeno, Y.6
Nishizaki, S.7
Fujita, T.8
-
33
-
-
85038318843
-
-
The data in Fig. 66 are from the same sample as that used for all the other figures in this paper. However, after all the measurements but those for Fig. 66, we found that the (formula presented) of the sample was decreased to 1.39 K (by 70 mK). This has probably caused changes of the appearance of the ac susceptibility data and of (formula presented) in Fig. 66
-
The data in Fig. 66 are from the same sample as that used for all the other figures in this paper. However, after all the measurements but those for Fig. 66, we found that the (formula presented) of the sample was decreased to 1.39 K (by 70 mK). This has probably caused changes of the appearance of the ac susceptibility data and of (formula presented) in Fig. 66.
-
-
-
-
34
-
-
0001117827
-
-
L.A. Angurel, F. Amin, M. Polichetti, J. Aarts, and P.H. Kes, Phys. Rev. B 56, 3425 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 3425
-
-
Angurel, L.A.1
Amin, F.2
Polichetti, M.3
Aarts, J.4
Kes, P.H.5
-
35
-
-
85038337727
-
-
Studies of the thermal conductivity (Ref. 18) and the specific heat (Ref. 24) suggest that the difference between the upper critical field and the second superconducting transition field only weakly depends on temperature apart from in the vicinity the bicritical point. The difference at low temperatures is 40-50 mT. If we assume this value for (formula presented) (formula presented) (field position of (formula presented) shown in Fig. 22 is mostly below the second superconducting transition field
-
Studies of the thermal conductivity (Ref. 18) and the specific heat (Ref. 24) suggest that the difference between the upper critical field and the second superconducting transition field only weakly depends on temperature apart from in the vicinity the bicritical point. The difference at low temperatures is 40-50 mT. If we assume this value for (formula presented) (formula presented) (field position of (formula presented) shown in Fig. 22 is mostly below the second superconducting transition field.
-
-
-
|