메뉴 건너뛰기




Volumn 67, Issue 4, 2003, Pages 8-

Entangling power and operator entanglement in qudit systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85037246271     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.67.042323     Document Type: Article
Times cited : (17)

References (40)
  • 1
    • 85174220730 scopus 로고    scopus 로고
    • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
    • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  • 9
    • 85037207288 scopus 로고    scopus 로고
    • Y. Makhlin, e-print quant-ph/0002045.
    • Makhlin, Y.1
  • 11
    • 0012131864 scopus 로고    scopus 로고
    • B. Kraus and J.I. Cirac, Phys. Rev. A 63, 062309 (2001);B. Kraus, K. Hammerer, G. Giedke, and J. I. Cirac, Phys. Rev. A (to be published); e-print
    • (2001) Phys. Rev. A , vol.63 , pp. 62309
    • Kraus, B.1    Cirac, J.I.2
  • 29
    • 85037180093 scopus 로고    scopus 로고
    • Ref. 2 the entangling power was defined using a different notation (Formula presented)
    • In Ref. 2 the entangling power was defined using a different notation (Formula presented)
  • 32
    • 85037181503 scopus 로고    scopus 로고
    • D. W. Berry and Barry C. Sanders (unpublished)
    • D. W. Berry and Barry C. Sanders (unpublished).
  • 37
    • 85037187197 scopus 로고    scopus 로고
    • S. D. Bartlett (private communication)
    • S. D. Bartlett (private communication).
  • 38
    • 85037197638 scopus 로고    scopus 로고
    • K. Fujii, e-print quant-ph/0207002.
    • Fujii, K.1
  • 40
    • 85037179569 scopus 로고    scopus 로고
    • The SUM gate may create entanglement of (Formula presented) from the state (Formula presented) This entanglement is the maximum because the SUM gate may be implemented nonlocally using this much entanglement via a generalization of the Gottesmann-Chuang 29 gate. Both the DSUM and SWAP gates create entanglement of (Formula presented) from initial states where the qudits acted upon are maximally entangled with ancillas; this entanglement is the maximum possible for a system of this dimension. Similarly, without ancillas the maximum possible entanglement is (Formula presented) and this may be created via the DSUM gate from the initial state (Formula presented)
    • The SUM gate may create entanglement of (Formula presented) from the state (Formula presented) This entanglement is the maximum because the SUM gate may be implemented nonlocally using this much entanglement via a generalization of the Gottesmann-Chuang 29 gate. Both the DSUM and SWAP gates create entanglement of (Formula presented) from initial states where the qudits acted upon are maximally entangled with ancillas; this entanglement is the maximum possible for a system of this dimension. Similarly, without ancillas the maximum possible entanglement is (Formula presented) and this may be created via the DSUM gate from the initial state (Formula presented)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.