-
1
-
-
85037245055
-
-
For details of the LIGO/VIRGO network see the web sites http://www.ligo.caltech.edu/ and http://www.pg.infn.it/virgo/
-
For details of the LIGO/VIRGO network see the web sites http://www.ligo.caltech.edu/ and http://www.pg.infn.it/virgo/.
-
-
-
-
2
-
-
85037244003
-
-
For details of the LISA mission see http://lisa.jpl.nasa.gov/ and http://www.estec.esa.nl/spdwww/future/html/lisa.htm. For compilations of articles related to LISA see Proceedings of the First International LISA Symposium [Class. Quantum Grav
-
For details of the LISA mission see http://lisa.jpl.nasa.gov/ and http://www.estec.esa.nl/spdwww/future/html/lisa.htm. For compilations of articles related to LISA see Proceedings of the First International LISA Symposium [Class. Quantum Grav. 14, 1397 (1997)];
-
(1997)
, vol.14
, pp. 1397
-
-
-
3
-
-
0442300124
-
-
AIP, New York, William M. Folkner
-
Laser Interferometer Space Antenna, edited by William M. Folkner, AIP Conf. Proc. No.456 (AIP, New York, 1998).
-
(1998)
Laser Interferometer Space Antenna
, vol.456
-
-
-
6
-
-
85037235783
-
-
E. S. Phinney (the head of NASA’s Mission Definition Team for LISA)has summarized its scientific payoffs at http://www.cco.caltech.edu/(Formula presented)esp/lisa/lisatab.html.
-
-
-
Phinney, E.S.1
-
23
-
-
0002149160
-
-
T. Tanaka, M. Shibata, M. Sasaki, H. Tagoshi, and T. Nakamura, Prog. Theor. Phys. 90, 65 (1993).
-
(1993)
Prog. Theor. Phys.
, vol.90
, pp. 65
-
-
Tanaka, T.1
Shibata, M.2
Sasaki, M.3
Tagoshi, H.4
Nakamura, T.5
-
24
-
-
18144385988
-
-
Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi, and T. Tanaka, Suppl. Prog. Theor. Phys. 128, 1 (1998).
-
(1998)
Suppl. Prog. Theor. Phys.
, vol.128
, pp. 1
-
-
Mino, Y.1
Sasaki, M.2
Shibata, M.3
Tagoshi, H.4
Tanaka, T.5
-
33
-
-
85037206422
-
-
Y. Mino, Ph.D. thesis, Kyoto University (1996)
-
Y. Mino, Ph.D. thesis, Kyoto University (1996).
-
-
-
-
34
-
-
17044392186
-
-
S. A. Hughes, Phys. Rev. D 61, 084004 (2000);S. A. Hughes, in Proceedings of the Third Edoardo Amaldi Meeting on Gravitational Waves, edited by S. Meshkov (AIP, New York, in press);
-
(2000)
Phys. Rev. D
, vol.61
, pp. 84004
-
-
Hughes, S.A.1
-
37
-
-
0009257212
-
-
M. Shibata, M. Sasaki, H. Tagoshi, and T. Tanaka, Phys. Rev. D 51, 1646 (1995).
-
(1995)
Phys. Rev. D
, vol.51
, pp. 1646
-
-
Shibata, M.1
Sasaki, M.2
Tagoshi, H.3
Tanaka, T.4
-
40
-
-
0003811646
-
-
S. W. Hawking, W. Israel
-
K. S. Thorne, in 300 Years of Gravitation, edited by S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, England, 1987), p. 330.
-
(1987)
300 Years of Gravitation
, pp. 330
-
-
Thorne, K.S.1
-
41
-
-
0000606498
-
-
This definition of (Formula presented) is due to E. E. Flanagan and S. L. Hughes, Phys. Rev. D 57, 4535 (1998). It differs from that used previously by one of the authors 33, in such a way as to free it from dependence on the shape of the detector’s noise spectral density (Formula presented).
-
(1998)
Phys. Rev. D
, vol.57
, pp. 4535
-
-
Flanagan, E.E.1
Hughes, S.L.2
-
44
-
-
0003768888
-
-
Gordon and Breach, New York, C. DeWitt, B. S. DeWitt
-
I. D. Novikov and K. S. Thorne, in Black Holes, edited by C. DeWitt and B. S. DeWitt (Gordon and Breach, New York, 1973).
-
(1973)
Black Holes
-
-
Novikov, I.D.1
Thorne, K.S.2
-
45
-
-
85037196451
-
-
LISA Study Team, LISA: Laser Interferometer Space Antenna for the detection and observation of gravitational waves, Pre-Phase A Report, 2nd ed. (Max Planck Institut für Quantenoptik, Garching, Germany, 1998)
-
LISA Study Team, LISA: Laser Interferometer Space Antenna for the detection and observation of gravitational waves, Pre-Phase A Report, 2nd ed. (Max Planck Institut für Quantenoptik, Garching, Germany, 1998).
-
-
-
-
46
-
-
85037182240
-
-
LISA Mission Definition Team (NASA) and LISA Science Study Team (ESA), LISA: Laser Interferometer Space Antenna (March Press, Boulder, CO, 1999)., The figure on p. 6 of this document shows (Formula presented) as computed by Peter Bender and Robin Stebbins from the LISA error budgets (Tables 4.1 and 4.2 of Ref
-
LISA Mission Definition Team (NASA) and LISA Science Study Team (ESA), LISA: Laser Interferometer Space Antenna (March Press, Boulder, CO, 1999).The figure on p. 6 of this document shows (Formula presented) as computed by Peter Bender and Robin Stebbins from the LISA error budgets (Tables 4.1 and 4.2 of Ref. 38), using the transfer function computed by Schilling 41. Bender and Stebbins kindly provided us with a table of this (Formula presented), from which we computed (Formula presented) using Eq. (5.1).
-
-
-
-
48
-
-
0033589905
-
-
see Fig. 3 of the Phys. Rev. D paper, which agrees to within about 10% with Bender and Stebbins’ (Formula presented)
-
F. B. EstabrookM. TintoJ. W. ArmstrongThis paper and an earlier one by the same authors [Astrophys. J. 527, 814 (1999)] develop promising new methods for combining the data from LISA’s six light paths so as to remove various kinds of noise, including that of laser frequency fluctuations. Armstrong, Estabrook, and Wu compute (Formula presented) independently of Bender and Stebbins, using the same LISA error budgets 38 but their own version of the transfer function;see Fig. 3 of the Phys. Rev. D paper, which agrees to within about 10% with Bender and Stebbins’ (Formula presented).
-
(1999)
Astrophys. J.
, vol.527
, pp. 814
-
-
Estabrook, F.B.1
Tinto, M.2
Armstrong, J.W.3
-
49
-
-
0041048805
-
-
R. Schilling, Class. Quantum Grav. 14, 1513 (1997). The noise curve plotted in Fig. 5(b) of this paper was based on an error budget which preceded that in Ref. 38, and so differs some from the noise curves in Refs. 39 and 40, especially at low frequencies.
-
(1997)
Class. Quantum Grav.
, vol.14
, pp. 1513
-
-
Schilling, R.1
-
51
-
-
85037251259
-
-
R. F. Webbink and Z. Han, in Laser Interferometer Space Antenna
-
R. F. Webbink and Z. Han, in Laser Interferometer Space Antenna 2, p. 61. Figure 22 shows their estimate of (Formula presented). When the Hils-Bender 42 Fig. 5 for (Formula presented) is converted to (Formula presented) via (Formula presented) with (Formula presented), it falls between the lowest Webbink-Han estimate (“no wind enhancement” curve) and the highest (“standard model”) and agrees to within a factor 2 with both—except for one issue: Webbink and Han do not take account of the cutoff in the noise due to the line spikes of individual white-dwarf binaries ceasing to overlap each other, for 1 yr of integration, at frequencies above about (Formula presented), so their noise curves fail to plunge above there.
-
-
-
-
52
-
-
85037233360
-
-
the computations underlying Figs. 11 and 22 we used the following analytic fit to Bender and Stebbins
-
In the computations underlying Figs. 11 and 22 we used the following analytic fit to Bender and Stebbins’ 39 LISA noise curve (Formula presented), in which f is measured in Hz: (Formula presented)
-
-
-
-
55
-
-
0001706230
-
-
C. Cutler, T. A. Apostolatos, L. Bildsten, L. S. Finn, E. E. Flanagan, D. Kennefick, D. M. Markovic, A. Ori, E. Poisson, G. J. Sussman, and K. S. Thorne, Phys. Rev. Lett. 70, 2984 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2984
-
-
Cutler, C.1
Apostolatos, T.A.2
Bildsten, L.3
Finn, L.S.4
Flanagan, E.E.5
Kennefick, D.6
Markovic, D.M.7
Ori, A.8
Poisson, E.9
Sussman, G.J.10
Thorne, K.S.11
-
58
-
-
85037242896
-
-
D. Gottleib and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (SIAM, 1977).
-
-
-
Gottleib, D.1
Orszag, S.A.2
|