메뉴 건너뛰기




Volumn 10617 LNCS, Issue , 2017, Pages 150-160

Deep learning on underwater marine object detection: A survey

Author keywords

Convolutional architecture; Deep learning; Marine; Neural network; Object detection; Seagrass; Underwater

Indexed keywords

COMPUTER VISION; DEEP NEURAL NETWORKS; IMAGE ANALYSIS; IMAGE PROCESSING; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; OBJECT DETECTION; OBJECT RECOGNITION; PLANTS (BOTANY);

EID: 85036618387     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-70353-4_13     Document Type: Conference Paper
Times cited : (129)

References (32)
  • 2
    • 84886386810 scopus 로고    scopus 로고
    • Texture analysis of seabed images: Quantifying the presence of Posidonia Oceanica at palma bay
    • IEEE Press, Bergen
    • Campos, M.M., Codina, G.O., Amengual, L.R., Julia, M.M.: Texture analysis of seabed images: quantifying the presence of Posidonia Oceanica at palma bay. In: OCEANS 2013 - MTS/IEEE Bergen, pp. 1-6. IEEE Press, Bergen (2013)
    • (2013) OCEANS 2013 - MTS/IEEE Bergen , pp. 1-6
    • Campos, M.M.1    Codina, G.O.2    Amengual, L.R.3    Julia, M.M.4
  • 3
    • 33751367527 scopus 로고    scopus 로고
    • R.R.R.: Environmental impacts of dredging on seagrasses: A review
    • Erftemeijer, P.L.A., Lewis III, R.R.R.: Environmental impacts of dredging on seagrasses: a review. Marine Pollut. Bull. 52, 1553-1572 (2006)
    • (2006) Marine Pollut. Bull , vol.52 , pp. 1553-1572
    • Erftemeijer, P.L.A.1    Lewis, I.2
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527-1554 (2006)
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2
  • 7
    • 84889683188 scopus 로고    scopus 로고
    • Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity
    • Lavery, P.S., McMahon, K., Weyers, J., Boyce, M.C., Oldham, C.E.: Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity. Mar. Ecol. Prog. Ser. 494, 121-133 (2013)
    • (2013) Mar. Ecol. Prog. Ser , vol.494 , pp. 121-133
    • Lavery, P.S.1    McMahon, K.2    Weyers, J.3    Boyce, M.C.4    Oldham, C.E.5
  • 9
    • 85018366927 scopus 로고    scopus 로고
    • Underwater optical image processing: A comprehensive review
    • Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S., Kim, H.: Underwater optical image processing: a comprehensive review. Mob. Netw. Appl. 22, 1-8 (2017)
    • (2017) Mob. Netw. Appl , vol.22 , pp. 1-8
    • Lu, H.1    Li, Y.2    Zhang, Y.3    Chen, M.4    Serikawa, S.5    Kim, H.6
  • 13
    • 84924506820 scopus 로고    scopus 로고
    • Automated fish detection in underwater images using shape-based level sets
    • Ravanbakhsh, M., Shortis, M., Shafait, F., Mian, A., Harvey, E., Seager, J.: Automated fish detection in underwater images using shape-based level sets. Photogram. Rec. 30(149), 46-62 (2015)
    • (2015) Photogram. Rec , vol.30 , Issue.149 , pp. 46-62
    • Ravanbakhsh, M.1    Shortis, M.2    Shafait, F.3    Mian, A.4    Harvey, E.5    Seager, J.6
  • 14
    • 27544491238 scopus 로고    scopus 로고
    • Classification of coral reef images from underwater video using neural networks
    • Shiela, M.M.A., Soriano, M., Saloma, C.: Classification of coral reef images from underwater video using neural networks. Opt. Express 13(22), 8766-8771 (2005)
    • (2005) Opt. Express , vol.13 , Issue.22 , pp. 8766-8771
    • Shiela, M.M.A.1    Soriano, M.2    Saloma, C.3
  • 16
    • 62549165834 scopus 로고    scopus 로고
    • Automated processing of coral reef benthic images. Limnol. Oceanogr
    • Stokes, M.D., Deane, G.B.: Automated processing of coral reef benthic images. Limnol. Oceanogr. Methods. 7, 157-168 (2009)
    • (2009) Methods , vol.7 , pp. 157-168
    • Stokes, M.D.1    Deane, G.B.2
  • 20
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85-117 (2015)
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 21
    • 84893404088 scopus 로고    scopus 로고
    • Hierarchical representation using NMF
    • Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.), Springer, Heidelberg
    • Song, H.A., Lee, S.-Y.: Hierarchical representation using NMF. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8226, pp. 466-473. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42054-2_58
    • (2013) ICONIP 2013. LNCS , vol.8226 , pp. 466-473
    • Song, H.A.1    Lee, S.-Y.2
  • 25
    • 84994409131 scopus 로고    scopus 로고
    • Coral reef fish detection and recognition in underwater videos by supervised machine learning: Comparison between deep learning and HOG+SVM methods
    • Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.), Springer, Cham
    • Villon, S., Chaumont, M., Subsol, G., Villéger, S., Claverie, T., Mouillot, D.: Coral reef fish detection and recognition in underwater videos by supervised machine learning: comparison between deep learning and HOG+SVM methods. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 160-171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_15
    • (2016) ACIVS 2016. LNCS , vol.10016 , pp. 160-171
    • Villon, S.1    Chaumont, M.2    Subsol, G.3    Villéger, S.4    Claverie, T.5    Mouillot, D.6
  • 27
    • 85006757619 scopus 로고    scopus 로고
    • Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning
    • Phoenix
    • Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: IEEE International Conference on Image Processing (ICIP), pp. 3713-3717, Phoenix (2016)
    • (2016) IEEE International Conference on Image Processing (ICIP , pp. 3713-3717
    • Lee, H.1    Park, M.2    Kim, J.3
  • 28
    • 84978252677 scopus 로고    scopus 로고
    • ZooplanktoNet: Deep convolutional network for Zooplankton classification
    • Shanghai
    • Dai, J., Wang, R., Zheng, H., Ji, G., Qiao, X.: ZooplanktoNet: deep convolutional network for Zooplankton classification. In: OCEANS, pp. 1-6, Shanghai (2016)
    • (2016) OCEANS , pp. 1-6
    • Dai, J.1    Wang, R.2    Zheng, H.3    Ji, G.4    Qiao, X.5
  • 30
    • 85036624407 scopus 로고    scopus 로고
    • National Data Science Bowl. https://www.kaggle.com/c/datasciencebowl


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.