-
1
-
-
0025870306
-
-
W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck, and D. Warland, ScienceSCIEAS0036-8075 252, 1854 (1991).
-
(1991)
Science
, vol.252
, pp. 1854
-
-
Bialek, W.1
Rieke, F.2
de Ruyter van Steveninck, R.R.3
Warland, D.4
-
4
-
-
0000989527
-
-
S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.80.197 80, 197 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 197
-
-
Strong, S.P.1
Koberle, R.2
de Ruyter van Steveninck, R.R.3
Bialek, W.4
-
6
-
-
0034222403
-
-
N. Brenner, S. P. Strong, R. Koberle, W. Bialek, and R. R. de Ruyter van Steveninck, Neural Comput.NEUCEB0899-766710.1162/089976600300015259 12, 1531 (2000).
-
(2000)
Neural Comput.
, vol.12
, pp. 1531
-
-
Brenner, N.1
Strong, S.P.2
Koberle, R.3
Bialek, W.4
de Ruyter van Steveninck, R.R.5
-
9
-
-
0003634127
-
-
MIT Press
-
F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, MA, 1997).
-
(1997)
Spikes: Exploring the Neural Code
-
-
Rieke, F.1
Warland, D.2
de Ruyter van Steveninck, R.3
Bialek, W.4
-
11
-
-
0001979913
-
-
D. V. Blake and A. M. Uttley, H. M. Stationery Office
-
H. B. Barlow, in Proceedings of the Symposium on the Mechanization of Thought Processes, edited by D. V. Blake and A. M. Uttley (H. M. Stationery Office, London, 1959), Vol. 2, pp. 537–574.
-
(1959)
Proceedings of the Symposium on the Mechanization of Thought Processes
, vol.2
, pp. 537-574
-
-
Barlow, H.B.1
-
12
-
-
0002014402
-
-
W. Rosenblith, MIT Press
-
H. B. Barlow, in Sensory Communication, edited by W. Rosenblith (MIT Press, Cambridge, MA, 1961), pp. 217–234.
-
(1961)
Sensory Communication
, pp. 217-234
-
-
Barlow, H.B.1
-
15
-
-
0035939908
-
-
A. L. Fairhall, G. D. Lewen, W. Bialek, and R. R. de Ruyter van Steveninck, Nature (London)NATUAS0028-083610.1038/35090500 412, 787 (2001).
-
(2001)
Nature (London)
, vol.412
, pp. 787
-
-
Fairhall, A.L.1
Lewen, G.D.2
Bialek, W.3
de Ruyter van Steveninck, R.R.4
-
17
-
-
0030938069
-
-
R. R. de Ruyter van Steveninck, G. D. Lewen, S. P. Strong, R. Koberle, and W. Bialek, ScienceSCIEAS0036-807510.1126/science.275.5307.1805 275, 1805 (1997).
-
(1997)
Science
, vol.275
, pp. 1805
-
-
de Ruyter van Steveninck, R.R.1
Lewen, G.D.2
Strong, S.P.3
Koberle, R.4
Bialek, W.5
-
18
-
-
85036170213
-
-
J. D. Victor, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.66.051903 66, 051903 (2002).
-
(2002)
Phys. Rev. E
, vol.66
, pp. 51903
-
-
Victor, J.D.1
-
20
-
-
28444443140
-
-
S. Ma, J. Stat. Phys.JSTPBS0022-4715 26, 221 (1981).
-
(1981)
J. Stat. Phys.
, vol.26
, pp. 221
-
-
Ma, S.1
-
21
-
-
84898931392
-
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, MIT Press
-
I. Nemenman, F. Shafee, and W. Bialek, in Advances in Neural Information Processing Systems 14, edited by T. G. Dietterich, S. Becker, and Z. Ghahramani (MIT Press, Cambridge, MA, 2002).
-
(2002)
Advances in Neural Information Processing Systems 14
-
-
Nemenman, I.1
Shafee, F.2
Bialek, W.3
-
22
-
-
0041877169
-
-
L. Paninski, Neural Comput.NEUCEB0899-766710.1162/089976603321780272 15, 1191 (2003).
-
(2003)
Neural Comput.
, vol.15
, pp. 1191
-
-
Paninski, L.1
-
23
-
-
85036235535
-
-
T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, in Proceedings of the 34th Symposium on Theory Computing, ACM, 2002.
-
Proceedings of the 34th Symposium on Theory Computing
-
-
Batu, T.1
Dasgupta, S.2
Kumar, R.3
Rubinfeld, R.4
-
26
-
-
0000090102
-
-
P. Grassberger, Phys. Lett. APYLAAG0375-960110.1016/0375-9601(88)90193-4 128, 369 (1988).
-
(1988)
Phys. Lett. A
, vol.128
, pp. 369
-
-
Grassberger, P.1
-
28
-
-
0000328645
-
-
D. Wolpert and D. Wolf, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.52.6841 52, 6841 (1995).
-
(1995)
Phys. Rev. E
, vol.52
, pp. 6841
-
-
Wolpert, D.1
Wolf, D.2
-
32
-
-
85036184186
-
-
I. Nemenman, Ph.D. thesis, Princeton University, 2000.
-
-
-
Nemenman, I.1
-
34
-
-
33645051555
-
-
J. van Hemmen, J. D. Cowan, and E. Domany, Springer-Verlag
-
R. de Ruyter van Steveninck and W. Bialek, in Methods in Neural Networks IV, edited by J. van Hemmen, J. D. Cowan, and E. Domany (Springer-Verlag, Heidelberg, New York, 2001), pp. 313–371 (see Fig. 17).
-
(2001)
Methods in Neural Networks IV
, pp. 313-371
-
-
de Ruyter van Steveninck, R.1
Bialek, W.2
-
35
-
-
85036267844
-
-
reference to Bayesian estimators, consistency usually means that, as (Formula presented) grows, the posterior probability concentrates around unknown parameters of the true model that generated the data. For finite parameter models, such as the one considered here, only technical assumptions like positivity of the prior for all parameter values, soundness (different parameters always correspond to different distributions) c31, and a few others are needed for consistency. For nonparametric models, the situation is more complicated. There one also needs ultraviolet convergence of the functional integrals defined by the prior c32 c33
-
In reference to Bayesian estimators, consistency usually means that, as (Formula presented) grows, the posterior probability concentrates around unknown parameters of the true model that generated the data. For finite parameter models, such as the one considered here, only technical assumptions like positivity of the prior for all parameter values, soundness (different parameters always correspond to different distributions) c31, and a few others are needed for consistency. For nonparametric models, the situation is more complicated. There one also needs ultraviolet convergence of the functional integrals defined by the prior c32 c33.
-
-
-
-
36
-
-
85036281240
-
-
It may happen that information is a small difference between two large entropies. Then, due to statistical errors, methods that estimate information directly will have an advantage over NSB, which estimates entropies first. In our case, this is not a problem since the information is roughly a half of the total available entropy c4
-
It may happen that information is a small difference between two large entropies. Then, due to statistical errors, methods that estimate information directly will have an advantage over NSB, which estimates entropies first. In our case, this is not a problem since the information is roughly a half of the total available entropy c4.
-
-
-
-
37
-
-
85036433146
-
-
For our and many other neural systems, the spike timing can be more accurate than the refractory period of roughly 2 ms c6 c10 c34. For the current amount of data, discretization of (Formula presented) ms and large enough (Formula presented) will push the limits of all estimation methods, including ours, that do not make explicit assumptions about properties of the spike trains. Thus, to have enough statistics to convincingly show validity of the NSB approach, in this paper we choose (Formula presented) ms, which is still much shorter than other methods can handle. We leave open the possibility that more information is contained in timing precision at finer scales
-
For our and many other neural systems, the spike timing can be more accurate than the refractory period of roughly 2 ms c6 c10 c34. For the current amount of data, discretization of (Formula presented) ms and large enough (Formula presented) will push the limits of all estimation methods, including ours, that do not make explicit assumptions about properties of the spike trains. Thus, to have enough statistics to convincingly show validity of the NSB approach, in this paper we choose (Formula presented) ms, which is still much shorter than other methods can handle. We leave open the possibility that more information is contained in timing precision at finer scales.
-
-
-
|