메뉴 건너뛰기




Volumn 5, Issue 3, 2017, Pages

An ensemble-boosting algorithm for classifying partial discharge defects in electrical assets

Author keywords

Artificial neural networks; Condition monitoring; Electrical assets; Ensemble boosting algorithm; Insulation diagnosis; Partial discharge; Single artificial neural network

Indexed keywords


EID: 85034224350     PISSN: None     EISSN: 20751702     Source Type: Journal    
DOI: 10.3390/machines5030018     Document Type: Article
Times cited : (14)

References (26)
  • 1
    • 85034240912 scopus 로고    scopus 로고
    • The Insulation for Machines Having a High Lifespan Expectancy, Design, Tests and Acceptance Criteria Issures
    • Barré, O.; Napame, B. The Insulation for Machines Having a High Lifespan Expectancy, Design, Tests and Acceptance Criteria Issures. Machines 2017, 5, 7
    • (2017) Machines , vol.5 , pp. 7
    • Barré, O.1    Napame, B.2
  • 2
    • 85034224777 scopus 로고    scopus 로고
    • Electrical Properties of Different Polymeric Materials and their Applications: The Influence of Electric Field
    • Boxue, D., Ed.; InTech: Rijeka, Croatia,; Chapter 3
    • Haque, S.M.; Ardila-Rey, J.A.; Masud, A.A.; Umar, Y.; Albarracín, R. Electrical Properties of Different Polymeric Materials and their Applications: The Influence of Electric Field. In Properties and Applications of Polymer Dielectrics; Boxue, D., Ed.; InTech: Rijeka, Croatia, 2017; Chapter 3
    • (2017) In Properties and Applications of Polymer Dielectrics
    • Haque, S.M.1    Ardila-Rey, J.A.2    Masud, A.A.3    Umar, Y.4    Albarracín, R.5
  • 3
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483-1510
    • (2006) Mech. Syst. Signal Process , vol.20 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 6
    • 0025519323 scopus 로고
    • Partial discharge III. Cavity-induced PD in solid dielectrics
    • Boggs, S. Partial discharge. III. Cavity-induced PD in solid dielectrics. IEEE Electr. Insul. Mag. 1990, 6, 11-16
    • (1990) IEEE Electr. Insul. Mag , vol.6 , pp. 11-16
    • Boggs, S.1
  • 7
    • 0037667684 scopus 로고    scopus 로고
    • A new approach to the diagnosis of solid insulation systems based on PD signal inference
    • Cavallini, A.; Montanari, G.C.; Contin, A.; Pulletti, F. A new approach to the diagnosis of solid insulation systems based on PD signal inference. IEEE Electr. Insul. Mag. 2003, 19, 23-30
    • (2003) IEEE Electr. Insul. Mag , vol.19 , pp. 23-30
    • Cavallini, A.1    Montanari, G.C.2    Contin, A.3    Pulletti, F.4
  • 8
    • 0030106079 scopus 로고    scopus 로고
    • Application of partial discharge testing to motor and generator stator winding maintenance
    • Stone, G.C.; Sedding, H.G.; Costello, M.J. Application of partial discharge testing to motor and generator stator winding maintenance. IEEE Trans. Ind. Appl. 1996, 32, 459-464
    • (1996) IEEE Trans. Ind. Appl , vol.32 , pp. 459-464
    • Stone, G.C.1    Sedding, H.G.2    Costello, M.J.3
  • 10
    • 58149131220 scopus 로고    scopus 로고
    • Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals
    • Markalous, S.M.; Tenbohlen, S.; Feser, K. Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1576-1583
    • (2008) IEEE Trans. Dielectr. Electr. Insul , vol.15 , pp. 1576-1583
    • Markalous, S.M.1    Tenbohlen, S.2    Feser, K.3
  • 11
    • 84955237919 scopus 로고    scopus 로고
    • On the Use of Monopole Antennas for Determining the Effect of the Enclosure of a Power Transformer Tank in Partial Discharges Electromagnetic Propagation
    • Albarracín, R.; Ardila-Rey, J.A.; Masud, A.A. On the Use of Monopole Antennas for Determining the Effect of the Enclosure of a Power Transformer Tank in Partial Discharges Electromagnetic Propagation. Sensors 2016, 16, 148. [CrossRef] [PubMed]
    • (2016) Sensors , vol.16 , pp. 148
    • Albarracín, R.1    Ardila-Rey, J.A.2    Masud, A.A.3
  • 12
    • 0027808474 scopus 로고
    • Neural networks as a tool for recognition of partial discharges
    • Gulski, E.; Krivda, A. Neural networks as a tool for recognition of partial discharges. IEEE Trans. Electr. Insul. 1993, 28, 984-1001
    • (1993) IEEE Trans. Electr. Insul , vol.28 , pp. 984-1001
    • Gulski, E.1    Krivda, A.2
  • 15
    • 77954194638 scopus 로고    scopus 로고
    • Application of data mining on partial discharge Part I: Predictive modelling classification
    • Lai, K.X.; Phung, B.T.; Blackburn, T.R. Application of data mining on partial discharge Part I: Predictive modelling classification. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 846-854
    • (2010) IEEE Trans. Dielectr. Electr. Insul , vol.17 , pp. 846-854
    • Lai, K.X.1    Phung, B.T.2    Blackburn, T.R.3
  • 16
    • 77249107870 scopus 로고    scopus 로고
    • Partial discharge source discrimination using a support vector machine
    • Hao, L.; Lewin, P.L. Partial discharge source discrimination using a support vector machine. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 189-197
    • (2010) IEEE Trans. Dielectr. Electr. Insul , vol.17 , pp. 189-197
    • Hao, L.1    Lewin, P.L.2
  • 17
    • 84877249255 scopus 로고    scopus 로고
    • Pattern recognition techniques and their applications for automatic classification of artificial partial discharge sources
    • Ma, H.; Chan, J.C.; Saha, T.K.; Ekanayake, C. Pattern recognition techniques and their applications for automatic classification of artificial partial discharge sources. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 468-478
    • (2013) IEEE Trans. Dielectr. Electr. Insul , vol.20 , pp. 468-478
    • Ma, H.1    Chan, J.C.2    Saha, T.K.3    Ekanayake, C.4
  • 19
    • 38149000787 scopus 로고    scopus 로고
    • Weighted ensemble boosting for robust activity recognition in video
    • Ivanov, Y.; Hamid, R. Weighted ensemble boosting for robust activity recognition in video. Mach. Graph. Vis. 2006, 15, 415
    • (2006) Mach. Graph. Vis , vol.15 , pp. 415
    • Ivanov, Y.1    Hamid, R.2
  • 20
    • 0037927076 scopus 로고    scopus 로고
    • 3rd ed International Electrotechnical Commission (IEC): New Delhi, India
    • IEC-60270. High-Voltage Test Techniques-Partial Discharge Measurements, 3rd ed.; International Electrotechnical Commission (IEC): New Delhi, India, 2000
    • (2000) High-Voltage Test Techniques-Partial Discharge Measurements
  • 21
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An Empirical study
    • Opitz, D.; Maclin, R. Popular ensemble methods: An Empirical study. J. Artif. Intell. Res. 1999, 11, 169-198
    • (1999) J. Artif. Intell. Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 22
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Brieman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123-124
    • (1996) Mach. Learn , vol.24 , pp. 123-124
    • Brieman, L.1
  • 23
    • 0025448521 scopus 로고
    • The Strength ofWeak Learnability
    • Schapire, R.E. The Strength ofWeak Learnability. Mach. Learn. 1990, 5, 197-227
    • (1990) Mach. Learn , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 25
    • 0029277377 scopus 로고
    • Partial discharge XIX: Discharge in air part I: Physical mechanisms
    • Giao, T.N. Partial discharge XIX: Discharge in air part I: Physical mechanisms. IEEE Electr. Insul. Mag. 1995, 11, 23-29
    • (1995) IEEE Electr. Insul. Mag , vol.11 , pp. 23-29
    • Giao, T.N.1
  • 26
    • 84894252201 scopus 로고    scopus 로고
    • Application of an ensemble neural network classifying partial discharge patterns
    • Masud, A.A.; Stewart, B.G.; McMeekin, S.G. Application of an ensemble neural network classifying partial discharge patterns. Electr. Power Syst. Res. 2014, 110, 154-162
    • (2014) Electr. Power Syst. Res , vol.110 , pp. 154-162
    • Masud, A.A.1    Stewart, B.G.2    McMeekin, S.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.