메뉴 건너뛰기




Volumn 31, Issue 6, 2014, Pages 124-129

Stochastic approximation vis-à-vis online learning for big data analytics

Author keywords

[No Author keywords available]

Indexed keywords

DATA VISUALIZATION; E-LEARNING; ELECTRIC POWER TRANSMISSION NETWORKS; MEDICAL IMAGING; ONLINE SYSTEMS; REAL TIME SYSTEMS; SIGNAL PROCESSING; SMART CITY; SOCIAL NETWORKING (ONLINE); STOCHASTIC SYSTEMS; STRUCTURAL HEALTH MONITORING;

EID: 85032752034     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2014.2345536     Document Type: Article
Times cited : (44)

References (14)
  • 1
    • 85032752433 scopus 로고    scopus 로고
    • Modeling and optimization for big data analytics
    • Sept
    • K. Slavakis, G. B. Giannakis, and G. Mateos, "Modeling and optimization for big data analytics," IEEE Signal Processing Mag., vol. 31, no. 5, pp. 18-31, Sept. 2014.
    • (2014) IEEE Signal Processing Mag. , vol.31 , Issue.5 , pp. 18-31
    • Slavakis, K.1    Giannakis, G.B.2    Mateos, G.3
  • 2
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditski, G. Lan, and A. Shapiro, "Robust stochastic approximation approach to stochastic programming," SIAM J. Optim., vol. 19, no. 4, pp. 1574-1609, 2009.
    • (2009) SIAM J. Optim. , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditski, A.2    Lan, G.3    Shapiro, A.4
  • 5
    • 66849141877 scopus 로고    scopus 로고
    • Distributed lms for consensus-based in-network adaptive processing
    • I. D. Schizas, G. Mateos, and G. B. Giannakis, "Distributed LMS for consensus-based in-network adaptive processing," IEEE Trans. Signal Processing, vol. 57, no. 6, pp. 2365-2381, 2009.
    • (2009) IEEE Trans. Signal Processing , vol.57 , Issue.6 , pp. 2365-2381
    • Schizas, I.D.1    Mateos, G.2    Giannakis, G.B.3
  • 6
    • 0030246542 scopus 로고    scopus 로고
    • On projection algorithms for solving convex feasibility problems
    • Sept.
    • H. H. Bauschke and J. M. Borwein, "On projection algorithms for solving convex feasibility problems," SIAM Review, vol. 38, no. 3, pp. 367-426, Sept. 1996.
    • (1996) SIAM Review , vol.38 , Issue.3 , pp. 367-426
    • Bauschke, H.H.1    Borwein, J.M.2
  • 7
    • 67349206945 scopus 로고    scopus 로고
    • A randomized kaczmarz algorithm with exponential convergence
    • T. Strohmer and R. Vershynin, "A randomized Kaczmarz algorithm with exponential convergence," J. Fourier Anal. Appl., vol. 15, no. 2, pp. 262-278, 2009.
    • (2009) J. Fourier Anal. Appl. , vol.15 , Issue.2 , pp. 262-278
    • Strohmer, T.1    Vershynin, R.2
  • 9
    • 0036342213 scopus 로고    scopus 로고
    • Incremental subgradient methods for nondifferentiable optimization
    • A. Nedić and D. P. Bertsekas, "Incremental subgradient methods for nondifferentiable optimization," SIAM J. Optim., vol. 12, no. 1, pp. 109-138, 2001.
    • (2001) SIAM J. Optim. , vol.12 , Issue.1 , pp. 109-138
    • Nedić, A.1    Bertsekas, D.P.2
  • 10
    • 84859418371 scopus 로고    scopus 로고
    • Online learning and online convex optimization
    • Mar
    • S. Shalev-Shwartz, "Online learning and online convex optimization," Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107-194, Mar. 2012.
    • (2012) Found. Trends Mach. Learn. , vol.4 , Issue.2 , pp. 107-194
    • Shalev-Shwartz, S.1
  • 11
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle, "Mirror descent and nonlinear projected subgradient methods for convex optimization," Oper. Res. Lett., vol. 31, no. 3, pp. 167-175, 2003.
    • (2003) Oper. Res. Lett. , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 13
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • Oct.
    • L. Xiao, "Dual averaging methods for regularized stochastic learning and online optimization," J. Mach. Learn. Res., vol. 11, pp. 2543-2596, Oct. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 14
    • 20744454447 scopus 로고    scopus 로고
    • Online convex optimization in the bandit setting: Gradient descent without a gradient
    • Vancouver Jan.
    • A. D. Flaxman, A. T. Kalai, and H. B. McMahan, "Online convex optimization in the bandit setting: Gradient descent without a gradient," in Proc. ACMSIAM Symp. Discrete Algorithms, Vancouver, Jan. 2005, pp. 385-394.
    • (2005) Proc. ACMSIAM Symp. Discrete Algorithms , pp. 385-394
    • Flaxman, A.D.1    Kalai, A.T.2    McMahan, H.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.