|
Volumn 49, Issue 11, 2017, Pages 1560-1563
|
Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology
a b a c b d e e f g h f g i d c b j,k,l i d more.. |
Author keywords
[No Author keywords available]
|
Indexed keywords
FIBRINOGEN;
ACCESS TO INFORMATION;
BENCHMARKING;
BIOINFORMATICS;
CLOUD COMPUTING;
COMPUTER SECURITY;
DATA ANALYSIS SOFTWARE;
FIBRINOGEN BLOOD LEVEL;
GENETIC ASSOCIATION;
GENETIC ASSOCIATION STUDY;
GENETIC EPIDEMIOLOGY;
GENOMICS;
GENOTYPE;
HUMAN;
PERSONALIZED MEDICINE;
PHENOTYPE;
PRIORITY JOURNAL;
QUALITY CONTROL;
REVIEW;
SINGLE NUCLEOTIDE POLYMORPHISM;
WHOLE GENOME SEQUENCING;
GENETICS;
GENOME;
INFORMATION DISSEMINATION;
METABOLISM;
MOBILE APPLICATION;
MOLECULAR EPIDEMIOLOGY;
POPULATION GENETICS;
PROCEDURES;
REGRESSION ANALYSIS;
SOFTWARE;
WORKFLOW;
BIG DATA;
FIBRINOGEN;
GENETICS, POPULATION;
GENOME;
HUMANS;
INFORMATION DISSEMINATION;
MOBILE APPLICATIONS;
MOLECULAR EPIDEMIOLOGY;
REGRESSION ANALYSIS;
SOFTWARE;
WORKFLOW;
|
EID: 85032456881
PISSN: 10614036
EISSN: 15461718
Source Type: Journal
DOI: 10.1038/ng.3968 Document Type: Review |
Times cited : (75)
|
References (12)
|