메뉴 건너뛰기




Volumn 33, Issue 20, 2017, Pages 3211-3219

Model-based branching point detection in single-cell data by K-branches clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; BIOLOGICAL MODEL; CELL DIFFERENTIATION; CLUSTER ANALYSIS; GENE EXPRESSION PROFILING; HUMAN; MOUSE; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; SOFTWARE;

EID: 85031825743     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx325     Document Type: Article
Times cited : (11)

References (26)
  • 1
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development
    • Bendall, S. et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell, 157, 714-725.
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.1
  • 2
    • 19644394100 scopus 로고    scopus 로고
    • Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
    • Coifman, R.R. et al. (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA, 102, 7426-7431.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 7426-7431
    • Coifman, R.R.1
  • 3
    • 84949115417 scopus 로고    scopus 로고
    • Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics
    • Systems biology Nanobiotechnology
    • de Vargas Roditi, L., and Claassen, M. (2015) Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics. Curr. Opin. Biotechnol., 34, 9-15. Systems biology Nanobiotechnology.
    • (2015) Curr. Opin. Biotechnol. , vol.34 , pp. 9-15
    • De Vargas Roditi, L.1    Claassen, M.2
  • 4
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grun, D., and van Oudenaarden, A. (2015) Design and analysis of single-cell sequencing experiments. Cell, 163, 799-810.
    • (2015) Cell , vol.163 , pp. 799-810
    • Grun, D.1    Van Oudenaarden, A.2
  • 5
    • 77951912210 scopus 로고    scopus 로고
    • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
    • Guo, G. et al. (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Develop. Cell, 18, 675-685.
    • (2010) Develop. Cell , vol.18 , pp. 675-685
    • Guo, G.1
  • 6
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi, L. et al. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989-2998.
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1
  • 7
    • 84984643819 scopus 로고    scopus 로고
    • Diffusion pseudotime robustly reconstructs lineage branching
    • Haghverdi, L. et al. (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods, 13, 845-848.
    • (2016) Nat. Methods , vol.13 , pp. 845-848
    • Haghverdi, L.1
  • 8
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference, and prediction
    • Springer, New York. Autres impressions: 2011 (corr), 2013 (7e corr)
    • Hastie, T.J. et al. (2009) The Elements of Statistical Learning: data Mining, Inference, and Prediction. Springer series in statistics, Springer, New York. Autres impressions: 2011 (corr), 2013 (7e corr).
    • (2009) Springer Series in Statistics
    • Hastie, T.J.1
  • 9
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin, D.A. et al. (2014) Massively parallel single-cell rna-seq for marker-free decomposition of tissues into cell types. Science, 343, 776-779.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1
  • 10
    • 84982806105 scopus 로고    scopus 로고
    • Tscan: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
    • Ji, Z., and Ji, H. (2016) Tscan: pseudo-time reconstruction and evaluation in single-cell rna-seq analysis. Nucleic Acids Res., 44, e117.
    • (2016) Nucleic Acids Res. , vol.44 , pp. e117
    • Ji, Z.1    Ji, H.2
  • 11
    • 85016121177 scopus 로고    scopus 로고
    • Sc3-consensus clustering of single-cell RNA-seq data
    • Kiselev, V.Y. et al. (2017) Sc3-consensus clustering of single-cell rna-seq data. Nat. Meth., 14, 483-486.
    • (2017) Nat. Meth. , vol.14 , pp. 483-486
    • Kiselev, V.Y.1
  • 12
    • 84886017663 scopus 로고    scopus 로고
    • Temporal dynamics and transcriptional control using single-cell gene expression analysis
    • Kouno, T. et al. (2013) Temporal dynamics and transcriptional control using single-cell gene expression analysis. Genome Biol., 14, R118.
    • (2013) Genome Biol. , vol.14 , pp. R118
    • Kouno, T.1
  • 13
    • 84901188210 scopus 로고    scopus 로고
    • Single-cell RNA sequencing reveals t helper cells synthesizing steroids de novo to contribute to immune homeostasis
    • Mahata, B. et al. (2014) Single-cell rna sequencing reveals t helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep., 7, 1130-1142.
    • (2014) Cell Rep. , vol.7 , pp. 1130-1142
    • Mahata, B.1
  • 15
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • Moignard, V. et al. (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotech., 33, 269-276.
    • (2015) Nat. Biotech. , vol.33 , pp. 269-276
    • Moignard, V.1
  • 16
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • Paul, F. et al. (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell, 163, 1663-1677.
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1
  • 17
    • 84968883790 scopus 로고    scopus 로고
    • Single-cell analysis of cd4+ t-cell differentiation reveals three major cell states and progressive acceleration of proliferation
    • Proserpio, V. et al. (2016) Single-cell analysis of cd4+ t-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol., 17, 1-15.
    • (2016) Genome Biol. , vol.17 , pp. 1-15
    • Proserpio, V.1
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S.T., and Saul, L.K. (2000) Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 19
    • 84974587998 scopus 로고    scopus 로고
    • Wishbone identifies bifurcating developmental trajectories from single-cell data
    • Setty, M. et al. (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotech., 34, 637-645.
    • (2016) Nat. Biotech. , vol.34 , pp. 637-645
    • Setty, M.1
  • 20
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle, O. et al. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133-145.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1
  • 22
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani, R. et al. (2001) Estimating the number of clusters in a data set via the gap statistic. J. R Stat. Soc. Ser. B (Stat. Methodol.), 63, 411-423.
    • (2001) J. R Stat. Soc. Ser. B (Stat. Methodol.) , vol.63 , pp. 411-423
    • Tibshirani, R.1
  • 23
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Research
    • Trapnell, C. et al. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotech., 32, 381-386. Research.
    • (2014) Nat. Biotech. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 24
    • 51149203927 scopus 로고
    • Canalization of development and the inheritance of acquired characters
    • Waddington, C.H. (1942) Canalization of development and the inheritance of acquired characters. Nature, 150, 563-565.
    • (1942) Nature , vol.150 , pp. 563-565
    • Waddington, C.H.1
  • 26
    • 84969505817 scopus 로고    scopus 로고
    • Slicer: Inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
    • Welch, J.D. et al. (2016) Slicer: inferring branched, nonlinear cellular trajectories from single cell rna-seq data. Genome Biol., 17, 106.
    • (2016) Genome Biol. , vol.17 , pp. 106
    • Welch, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.