메뉴 건너뛰기




Volumn 31, Issue 4, 2018, Pages 415-424

Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease

Author keywords

Convolution neural network; Deep architecture; Interscanner variation; Interstitial lung disease; Support vector machine

Indexed keywords

BIOLOGICAL ORGANS; COMPUTERIZED TOMOGRAPHY; CONVOLUTION; OPACITY; PULMONARY DISEASES; SUPPORT VECTOR MACHINES;

EID: 85031507028     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-017-0028-9     Document Type: Article
Times cited : (81)

References (30)
  • 1
    • 33749444308 scopus 로고    scopus 로고
    • Incidence and prevalence of idiopathic pulmonary fibrosis
    • PID: 16809633
    • Raghu G et al.: Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816, 2006
    • (2006) Am J Respir Crit Care Med , vol.174 , Issue.7 , pp. 810-816
    • Raghu, G.1
  • 2
    • 0037307205 scopus 로고    scopus 로고
    • Utility of high-resolution CT for management of diffuse lung disease: Results of a survey of US pulmonary physicians
    • PID: 12583568
    • Scatarige JC et al.: Utility of high-resolution CT for management of diffuse lung disease: Results of a survey of US pulmonary physicians. Acad Radiol 10(2):167–175, 2003
    • (2003) Acad Radiol , vol.10 , Issue.2 , pp. 167-175
    • Scatarige, J.C.1
  • 3
    • 0026031087 scopus 로고
    • Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high-resolution CT
    • PID: 2006262
    • Grenier P et al.: Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high-resolution CT. Radiology 179(1):123–132, 1991
    • (1991) Radiology , vol.179 , Issue.1 , pp. 123-132
    • Grenier, P.1
  • 4
    • 0025349284 scopus 로고
    • Measurement of pulmonary parenchymal attenuation: Use of spirometric gating with quantitative CT
    • PID: 2315492
    • Kalender WA et al.: Measurement of pulmonary parenchymal attenuation: Use of spirometric gating with quantitative CT. Radiology 175(1):265–268, 1990
    • (1990) Radiology , vol.175 , Issue.1 , pp. 265-268
    • Kalender, W.A.1
  • 5
    • 0041428219 scopus 로고    scopus 로고
    • Obstructive lung diseases: Texture classification for differentiation at CT 1
    • PID: 12869685
    • Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at CT 1. Radiology 228(3):871–877, 2003
    • (2003) Radiology , vol.228 , Issue.3 , pp. 871-877
    • Chabat, F.1    Yang, G.-Z.2    Hansell, D.M.3
  • 6
    • 4644265608 scopus 로고    scopus 로고
    • Effects of density changes in the chest on lung stereotactic radiotherapy
    • Fujisaki T et al.: Effects of density changes in the chest on lung stereotactic radiotherapy. Radiat Med 22(4):233–238, 2003
    • (2003) Radiat Med , vol.22 , Issue.4 , pp. 233-238
    • Fujisaki, T.1
  • 7
    • 33645675961 scopus 로고    scopus 로고
    • MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies
    • PID: 16608061
    • Xu Y et al.: MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 25(4):464–475, 2006
    • (2006) IEEE Trans Med Imaging , vol.25 , Issue.4 , pp. 464-475
    • Xu, Y.1
  • 8
    • 0031461184 scopus 로고    scopus 로고
    • Usual interstitial pneumonia: Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis
    • Delorme S et al.: Usual interstitial pneumonia: Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Investig Radiol 32(9):566–574, 1997
    • (1997) Investig Radiol , vol.32 , Issue.9 , pp. 566-574
    • Delorme, S.1
  • 9
    • 33745949494 scopus 로고    scopus 로고
    • Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM)
    • PID: 16843849
    • Xu Y et al.: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13(8):969–978, 2006
    • (2006) Acad Radiol , vol.13 , Issue.8 , pp. 969-978
    • Xu, Y.1
  • 10
    • 34548033498 scopus 로고    scopus 로고
    • The effects of radiation dose and CT manufacturer on measurements of lung densitometry
    • Yuan R et al.: The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest J 132(2):617–623, 2007
    • (2007) Chest J , vol.132 , Issue.2 , pp. 617-623
    • Yuan, R.1
  • 11
    • 58149295956 scopus 로고    scopus 로고
    • Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT)
    • Lee Y et al.: Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT). Comput Methods Prog Biomed 93(2):206–215, 2009
    • (2009) Comput Methods Prog Biomed , vol.93 , Issue.2 , pp. 206-215
    • Lee, Y.1
  • 12
    • 44449109945 scopus 로고    scopus 로고
    • Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: Comparison with density-based quantification and correlation with pulmonary function test
    • Park YS et al.: Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: Comparison with density-based quantification and correlation with pulmonary function test. Investig Radiol 43(6):395–402, 2008
    • (2008) Investig Radiol , vol.43 , Issue.6 , pp. 395-402
    • Park, Y.S.1
  • 13
    • 10744220284 scopus 로고    scopus 로고
    • Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function 1
    • PID: 14587629
    • Hoffman EA et al.: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function 1. Acad Radiol 10(10):1104–1118, 2003
    • (2003) Acad Radiol , vol.10 , Issue.10 , pp. 1104-1118
    • Hoffman, E.A.1
  • 14
    • 0032803024 scopus 로고    scopus 로고
    • Computer recognition of regional lung disease patterns
    • PID: 10430742
    • Uppaluri R et al.: Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–654, 1999
    • (1999) Am J Respir Crit Care Med , vol.160 , Issue.2 , pp. 648-654
    • Uppaluri, R.1
  • 15
    • 72149087712 scopus 로고    scopus 로고
    • Computerized detection of diffuse lung disease in MDCT: The usefulness of statistical texture features
    • PID: 19864701
    • Wang J et al.: Computerized detection of diffuse lung disease in MDCT: The usefulness of statistical texture features. Phys Med Biol 54(22):6881, 2009
    • (2009) Phys Med Biol , vol.54 , Issue.22 , pp. 6881
    • Wang, J.1
  • 16
    • 84878617215 scopus 로고    scopus 로고
    • Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system
    • PID: 22918563
    • Yoon RG et al.: Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system. Eur Radiol 23(3):692–701, 2013
    • (2013) Eur Radiol , vol.23 , Issue.3 , pp. 692-701
    • Yoon, R.G.1
  • 17
    • 79955762218 scopus 로고    scopus 로고
    • Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: Quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system
    • PID: 21603289
    • Park SO et al.: Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: Quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system. Korean J Radiol 12(3):297–307, 2011
    • (2011) Korean J Radiol , vol.12 , Issue.3 , pp. 297-307
    • Park, S.O.1
  • 18
    • 84877277097 scopus 로고    scopus 로고
    • A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier
    • PID: 23635282
    • Chang Y et al.: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40(5):051912, 2013
    • (2013) Med Phys , vol.40 , Issue.5 , pp. 051912
    • Chang, Y.1
  • 22
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Springer
    • Cruz-Roa AA et al.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013. Springer, 2013, pp 403–410
    • (2013) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 , pp. 403-410
    • Cruz-Roa, A.A.1
  • 23
    • 84908128415 scopus 로고    scopus 로고
    • Multi-atlas segmentation with augmented features for cardiac MR images
    • PID: 25299433
    • Bai W et al.: Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109, 2015
    • (2015) Med Image Anal , vol.19 , Issue.1 , pp. 98-109
    • Bai, W.1
  • 27
    • 84968572560 scopus 로고    scopus 로고
    • Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines
    • PID: 26886968
    • van Tulder G, de Bruijne M: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. IEEE Trans Med Imaging 35(5):1262–1272, 2016
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1262-1272
    • van Tulder, G.1    de Bruijne, M.2
  • 28
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • PID: 26955021
    • Anthimopoulos M et al.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216, 2016
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1207-1216
    • Anthimopoulos, M.1
  • 29
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • PID: 26886976
    • Shin H-C et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298, 2016
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.-C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.