메뉴 건너뛰기




Volumn , Issue , 2017, Pages 36-43

Dependency and AMR embeddings for drug-drug interaction extraction from biomedical literature

Author keywords

Abstract Meaning Representation; Deep learning; Dependency; Drug drug interaction; Embeddings

Indexed keywords

BIOINFORMATICS; DECISION TREES; DEEP LEARNING; EXTRACTION; SYNTACTICS;

EID: 85031316038     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3107411.3107426     Document Type: Conference Paper
Times cited : (27)

References (43)
  • 5
    • 84980583466 scopus 로고    scopus 로고
    • UTurku: Drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge
    • ∗ SEM), Vol. 2. 651-659.
    • (2013) ∗ SEM) , vol.2 , pp. 651-659
    • Björne, J.1    Kaewphan, S.2    Salakoski, T.3
  • 7
    • 85040578445 scopus 로고    scopus 로고
    • NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels
    • Behrouz Bokharaeian and Alberto Díaz. 2013. NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels. In Second Joint Conference on Lexical and Computational Semantics. 644-650.
    • (2013) Second Joint Conference on Lexical and Computational Semantics , pp. 644-650
    • Bokharaeian, B.1    Díaz, A.2
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 2001
    • Leo Breiman. 2001. Random forests. Machine learning 45, 1(2001), 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 85031322240 scopus 로고    scopus 로고
    • FBK-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information
    • 2013
    • Md Faisal Mahbub Chowdhury and Alberto Lavelli. 2013. FBK-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information. Atlanta, Georgia, USA 351(2013), 53.
    • (2013) Atlanta, Georgia, USA , vol.351 , pp. 53
    • Faisal Mahbub Chowdhury, M.1    Lavelli, A.2
  • 11
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems
    • 2014
    • Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. 2014. Do we need hundreds of classifiers to solve real world classification problems. J. Mach. Learn. Res 15, 1(2014), 3133-3181.
    • (2014) J. Mach. Learn. Res , vol.15 , Issue.1 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 12
    • 85006085723 scopus 로고    scopus 로고
    • Systematic review of the prevalence of medication errors resulting in hospitalization and death of nursing home residents
    • 2017
    • Noha Ferrah, Janaka J Lovell, and Joseph E Ibrahim. 2017. Systematic review of the prevalence of medication errors resulting in hospitalization and death of nursing home residents. Journal of the American Geriatrics Society 65, 2(2017), 433-442.
    • (2017) Journal of the American Geriatrics Society , vol.65 , Issue.2 , pp. 433-442
    • Ferrah, N.1    Lovell, J.J.2    Ibrahim, J.E.3
  • 14
    • 77953797578 scopus 로고    scopus 로고
    • Exploitingshallow linguistic information for relation extraction from biomedical literature
    • Citeseer
    • Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. 2006. Exploitingshallow linguistic information for relation extraction from biomedical literature.. In EACL, Vol. 18. Citeseer, 401-408.
    • (2006) EACL , vol.18 , pp. 401-408
    • Giuliano, C.1    Lavelli, A.2    Romano, L.3
  • 16
    • 77949427679 scopus 로고    scopus 로고
    • Adverse drug event rates in six community hospitals and the potential impact of computerized physician order entry for prevention
    • 2010
    • Balthasar L Hug, Daniel J Witkowski, Colin M Sox, Carol A Keohane, Diane L Seger, Catherine Yoon, Michael E Matheny, and David W Bates. 2010. Adverse drug event rates in six community hospitals and the potential impact of computerized physician order entry for prevention. Journal of general internal medicine 25, 1(2010), 31-38.
    • (2010) Journal of General Internal Medicine , vol.25 , Issue.1 , pp. 31-38
    • Hug, B.L.1    Witkowski, D.J.2    Sox, C.M.3    Keohane, C.A.4    Seger, D.L.5    Yoon, C.6    Matheny, M.E.7    Bates, D.W.8
  • 17
    • 84883654527 scopus 로고    scopus 로고
    • Anew, evidence-based estimate ofpatientharms associated with hospital care
    • 2013
    • John T James. 2013. Anew, evidence-based estimate ofpatientharms associated with hospital care. Journal of patient safety 9, 3(2013), 122-128.
    • (2013) Journal of Patient Safety , vol.9 , Issue.3 , pp. 122-128
    • James, J.T.1
  • 18
    • 84930689846 scopus 로고    scopus 로고
    • Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach
    • 2015
    • Sun Kim, Haibin Liu, Lana Yeganova, and W. John Wilbur. 2015. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach. Journal of biomedical informatics 55(2015), 23-30.
    • (2015) Journal of Biomedical Informatics , vol.55 , pp. 23-30
    • Kim, S.1    Liu, H.2    Yeganova, L.3    John Wilbur, W.4
  • 20
    • 84994137854 scopus 로고    scopus 로고
    • Dependency based embeddings for sentence classification tasks
    • Alexandros Komninos and Suresh Manandhar. 2016. Dependency based embeddings for sentence classification tasks. In Proceedings of NAACL-HLT. 1490-1500.
    • (2016) Proceedings of NAACL-HLT , pp. 1490-1500
    • Komninos, A.1    Manandhar, S.2
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • 2015
    • Yann Le Cun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553(2015), 436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Le Cun, Y.1    Bengio, Y.2    Hinton, G.3
  • 23
    • 84906924508 scopus 로고    scopus 로고
    • Dependency-based word embeddings
    • Citeseer
    • Omer Levy and Yoav Goldberg. 2014. Dependency-Based Word Embeddings.. In ACL (2). Citeseer, 302-308.
    • (2014) ACL (2) , pp. 302-308
    • Levy, O.1    Goldberg, Y.2
  • 24
    • 85027488840 scopus 로고    scopus 로고
    • A topic-modeling based framework for drug-drug interaction classification from biomedical text
    • American Medical Informatics Association
    • Dingcheng Li, Sijia Liu, Majid Rastegar-Mojarad, Yanshan Wang, Vipin Chaudhary, Terry Therneau, and Hongfang Liu. 2016. A Topic-modeling Based Framework for Drug-drug Interaction Classification from Biomedical Text. In AMIA Annual Symposium Proceedings, Vol. 2016. American Medical Informatics Association, 789.
    • (2016) AMIA Annual Symposium Proceedings , vol.2016 , pp. 789
    • Li, D.1    Liu, S.2    Rastegar-Mojarad, M.3    Wang, Y.4    Chaudhary, V.5    Therneau, T.6    Liu, H.7
  • 27
    • 84969802532 scopus 로고    scopus 로고
    • Medical error?the third leading cause of death in the US
    • 2016
    • Martin A Makary and Michael Daniel. 2016. Medical error?the third leading cause of death in the US. Bmj 353(2016), i2139.
    • (2016) Bmj , vol.353 , pp. i2139
    • Makary, M.A.1    Daniel, M.2
  • 30
    • 84923371782 scopus 로고    scopus 로고
    • The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: A systematic review and meta-analysis
    • 2014
    • Teryl K Nuckols, Crystal Smith-Spangler, Sally C Morton, Steven M Asch, Vaspaan M Patel, Laura J Anderson, Emily L Deichsel, and Paul G Shekelle. 2014. The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: a systematic review and meta-analysis. Systematic reviews 3, 1(2014), 56.
    • (2014) Systematic Reviews , vol.3 , Issue.1 , pp. 56
    • Nuckols, T.K.1    Smith-Spangler, C.2    Morton, S.C.3    Asch, S.M.4    Patel, V.M.5    Anderson, L.J.6    Deichsel, E.L.7    Shekelle, P.G.8
  • 32
    • 84951995990 scopus 로고    scopus 로고
    • Extraction and classification of drug-drug interaction from biomedical text using a two-stage classifier
    • 2013
    • Majid Rastegar-Mojarad. 2013. Extraction and Classification of Drug-Drug Interaction from Biomedical Text Using a Two-Stage Classifier. Theses and Dissertations 304 (2013).
    • (2013) Theses and Dissertations , vol.304
    • Rastegar-Mojarad, M.1
  • 34
    • 0031741265 scopus 로고    scopus 로고
    • Net increasein stimulatory input resulting from a decrease in Inhibin B and an increase in activin a may contribute in part to the rise in follicular phase follicle-stimulating hormone of aging cycling women 1
    • 1998
    • Nancy E Reame, Tammy L Wyman, David J Phillips, David M de Kretser, and Vasantha Padmanabhan. 1998. Net Increasein Stimulatory Input Resulting from a Decrease in Inhibin B and an Increase in Activin A May Contribute in Part to the Rise in Follicular Phase Follicle-Stimulating Hormone of Aging Cycling Women 1. The Journal of Clinical Endocrinology & Metabolism 83, 9(1998), 3302-3307.
    • (1998) The Journal of Clinical Endocrinology & Metabolism , vol.83 , Issue.9 , pp. 3302-3307
    • Reame, N.E.1    Wyman, T.L.2    Phillips, D.J.3    De Kretser, D.M.4    Padmanabhan, V.5
  • 35
  • 38
    • 84906924350 scopus 로고    scopus 로고
    • Learning sentiment-specific word embedding for twitter sentiment classification
    • Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014. Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification.. In ACL (1). 1555-1565.
    • (2014) ACL (1) , pp. 1555-1565
    • Tang, D.1    Wei, F.2    Yang, N.3    Zhou, M.4    Liu, T.5    Qin, B.6
  • 40
    • 84960092192 scopus 로고    scopus 로고
    • A transition-based algorithm for AMR parsing
    • Chuan Wang, Nianwen Xue, Sameer Pradhan, and Sameer Pradhan. 2015. A Transition-based Algorithm for AMR Parsing.. In HLT-NAACL. 366-375.
    • (2015) HLT-NAACL , pp. 366-375
    • Wang, C.1    Xue, N.2    Pradhan, S.3    Pradhan, S.4
  • 41
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun. Zhao, and others. 2014. Relation Classification via Convolutional Deep Neural Network.. In COLING. 2335-2344.
    • (2014) COLING , pp. 2335-2344
    • Zeng, D.1    Liu, K.2    Lai, S.3    Zhou, G.4    Zhao, J.5
  • 43
    • 85008626797 scopus 로고    scopus 로고
    • Drug drug interaction extraction from biomedical literature using syntax convolutional neural network
    • 2016
    • Zhehuan Zhao, Zhihao Yang, Ling Luo, Hongfei Lin, and Jian Wang. 2016. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics 32, 22(2016), 3444-3453.
    • (2016) Bioinformatics , vol.32 , Issue.22 , pp. 3444-3453
    • Zhao, Z.1    Yang, Z.2    Luo, L.3    Lin, H.4    Wang, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.