-
1
-
-
84937961091
-
Do deep nets really need to be deep?
-
Ba, J., and Caruana, R. 2014. Do deep nets really need to be deep? In NIPS, 2654-2662.
-
(2014)
NIPS
, pp. 2654-2662
-
-
Ba, J.1
Caruana, R.2
-
6
-
-
84979924150
-
End-to-end training of deep visuomotor policies
-
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-to-end training of deep visuomotor policies. JMLR 17(39):1-40.
-
(2016)
JMLR
, vol.17
, Issue.39
, pp. 1-40
-
-
Levine, S.1
Finn, C.2
Darrell, T.3
Abbeel, P.4
-
7
-
-
84910035297
-
Learning small-size dnn with output-distribution-based criteria
-
Li, J.; Zhao, R.; Huang, J.-T.; and Gong, Y. 2014. Learning small-size dnn with output-distribution-based criteria. In Interspeech, 1910-1914.
-
(2014)
Interspeech
, pp. 1910-1914
-
-
Li, J.1
Zhao, R.2
Huang, J.-T.3
Gong, Y.4
-
10
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V.; Kavukcuoglu, K.; Silver, D.; a Rusu, A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; C. Beattie, A. S.; Antonoglou, I.; H. King, D. K.; Wierstra, D.; Legg, S.; and Hassabis, D. 2015. Human-level control through deep reinforcement learning. Nature.
-
(2015)
Nature
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
Petersen, S.11
Beattie, A.S.C.12
Antonoglou, I.13
King, D.K.H.14
Wierstra, D.15
Legg, S.16
Hassabis, D.17
-
11
-
-
0027684215
-
Prioritized sweeping: Reinforcement learning with less data and less time
-
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweeping: Reinforcement learning with less data and less time. Machine Learning 13(1):103-130.
-
(1993)
Machine Learning
, vol.13
, Issue.1
, pp. 103-130
-
-
Moore, A.W.1
Atkeson, C.G.2
-
13
-
-
85083953433
-
Actormimic deep multitask and transfer reinforcement learning
-
Parisotto, E.; Ba, J.; and Salakhutdinov, R. 2016. Actormimic deep multitask and transfer reinforcement learning. In ICLR.
-
(2016)
ICLR
-
-
Parisotto, E.1
Ba, J.2
Salakhutdinov, R.3
-
14
-
-
21844480297
-
Generalized prioritized sweeping
-
Parr, D. A. N. F. R. 1998. Generalized prioritized sweeping. In NIPS.
-
(1998)
NIPS
-
-
Parr, D.A.N.F.R.1
-
15
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and Bengio, Y. 2015. Fitnets: Hints for thin deep nets. In ICLR.
-
(2015)
ICLR
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
17
-
-
85083952240
-
Policy distillation
-
Rusu, A. A.; Colmenarejo, S. G.; Gulcehre, C.; Desjardins, G.; Kirkpatrick, J.; Pascanu, R.; Mnih, V.; Kavukcuoglu, K.; and Hadsell, R. 2016. Policy distillation. In ICLR.
-
(2016)
ICLR
-
-
Rusu, A.A.1
Colmenarejo, S.G.2
Gulcehre, C.3
Desjardins, G.4
Kirkpatrick, J.5
Pascanu, R.6
Mnih, V.7
Kavukcuoglu, K.8
Hadsell, R.9
-
19
-
-
85062336054
-
Planning by prioritized sweeping with small backups
-
Seijen, H. V., and Sutton, R. S. 2013. Planning by prioritized sweeping with small backups. In ICML, 361-369.
-
(2013)
ICML
, pp. 361-369
-
-
Seijen, H.V.1
Sutton, R.S.2
-
20
-
-
0003420416
-
-
Cambridge, MA, USA: MIT Press, 1st edition
-
Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforcement Learning. Cambridge, MA, USA: MIT Press, 1st edition.
-
(1998)
Introduction to Reinforcement Learning
-
-
Sutton, R.S.1
Barto, A.G.2
-
23
-
-
85007210890
-
Deep reinforcement learning with double q-learning
-
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep reinforcement learning with double q-learning. In AAAI, 2094-2100.
-
(2016)
AAAI
, pp. 2094-2100
-
-
Van Hasselt, H.1
Guez, A.2
Silver, D.3
-
24
-
-
84998679057
-
Graying the black box: Understanding dqns
-
Zahavy, T.; Zrihem, N. B.; and Mannor, S. 2016. Graying the black box: Understanding dqns. In ICML, 1899-1908.
-
(2016)
ICML
, pp. 1899-1908
-
-
Zahavy, T.1
Zrihem, N.B.2
Mannor, S.3
-
25
-
-
84977555800
-
Learning deep neural network policies with continuous memory states
-
IEEE
-
Zhang, M.; McCarthy, Z.; Finn, C.; Levine, S.; and Abbeel, P. 2016. Learning deep neural network policies with continuous memory states. In ICRA, 520-527. IEEE.
-
(2016)
ICRA
, pp. 520-527
-
-
Zhang, M.1
McCarthy, Z.2
Finn, C.3
Levine, S.4
Abbeel, P.5
|