메뉴 건너뛰기




Volumn 170, Issue 5, 2017, Pages 296-304

Quantile analysis of factors influencing the time taken to clear road traffic incidents

Author keywords

Traffic engineering; Transport management; Transport planning

Indexed keywords

HAZARDS; HIGHWAY ADMINISTRATION; HIGHWAY ENGINEERING; REGRESSION ANALYSIS; ROADS AND STREETS; STREET TRAFFIC CONTROL; TRAFFIC CONTROL; TRANSPORTATION;

EID: 85029786474     PISSN: 0965092X     EISSN: 17517710     Source Type: Journal    
DOI: 10.1680/jtran.15.00008     Document Type: Article
Times cited : (23)

References (39)
  • 2
    • 84927765551 scopus 로고    scopus 로고
    • A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes
    • Chen C, Zhang G, Tarefder R, (2015) A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes. Accident Analysis & Prevention 80: 76–88.
    • (2015) Accident Analysis & Prevention , vol.80 , pp. 76-88
    • Chen, C.1    Zhang, G.2    Tarefder, R.3
  • 3
    • 84959515282 scopus 로고    scopus 로고
    • Investigating driver injury severity patterns in rollover crashes using support vector machine models
    • Chen C, Zhang G, Qian Z, Tarefder RA, and Tian Z, (2016) Investigating driver injury severity patterns in rollover crashes using support vector machine models. Accident Analysis & Prevention 90: 128–139.
    • (2016) Accident Analysis & Prevention , vol.90 , pp. 128-139
    • Chen, C.1    Zhang, G.2    Qian, Z.3    Tarefder, R.A.4    Tian, Z.5
  • 4
    • 71949115970 scopus 로고    scopus 로고
    • Development of an accident duration prediction model on the Korean Freeway Systems
    • Chung Y, (2010) Development of an accident duration prediction model on the Korean Freeway Systems. Accident Analysis & Prevention 42(1): 282–289.
    • (2010) Accident Analysis & Prevention , vol.42 , Issue.1 , pp. 282-289
    • Chung, Y.1
  • 5
    • 84941616445 scopus 로고    scopus 로고
    • Exploring the influential factors in incident clearance time: disentangling causation from self-selection bias
    • Ding C, Ma X, Wang Y, and Wang Y, (2015) Exploring the influential factors in incident clearance time: disentangling causation from self-selection bias. Accident Analysis & Prevention 85: 58–65.
    • (2015) Accident Analysis & Prevention , vol.85 , pp. 58-65
    • Ding, C.1    Ma, X.2    Wang, Y.3    Wang, Y.4
  • 6
    • 0003417236 scopus 로고    scopus 로고
    • Office of Travel Management, Federal Highway Administration, Rockville, MD, USA
    • Farradyne P, (2000) Traffic Incident Management Handbook. Office of Travel Management, Federal Highway Administration, Rockville, MD, USA.
    • (2000) Traffic Incident Management Handbook
    • Farradyne, P.1
  • 7
    • 34548361277 scopus 로고    scopus 로고
    • Using quantile regression for duration analysis
    • Hübler B, and Frohn J, (eds), Springer, Berlin, Germany, and,. In, (eds))
    • Fitzenberger B, and Wilke RA, (2006) Using quantile regression for duration analysis. In Modern Econometric Analysis (Hübler B, and Frohn J, (eds)). Springer, Berlin, Germany, pp. 103–118.
    • (2006) Modern Econometric Analysis , pp. 103-118
    • Fitzenberger, B.1    Wilke, R.A.2
  • 9
    • 84907938748 scopus 로고    scopus 로고
    • Examination of factors affecting freeway incident clearance times: a comparison of the generalized F model and several alternative nested models
    • Ghosh I, Savolainen PT, and Gates TJ, (2014) Examination of factors affecting freeway incident clearance times: a comparison of the generalized F model and several alternative nested models. Journal of Advanced Transportation, 48(6), 471–485.
    • (2014) Journal of Advanced Transportation , vol.48 , Issue.6 , pp. 471-485
    • Ghosh, I.1    Savolainen, P.T.2    Gates, T.J.3
  • 10
    • 0027996303 scopus 로고
    • Hazard-based duration models and their application to transport analysis
    • Hensher DA, and Mannering FL, (1994) Hazard-based duration models and their application to transport analysis. Transport Reviews 14(1): 63–82.
    • (1994) Transport Reviews , vol.14 , Issue.1 , pp. 63-82
    • Hensher, D.A.1    Mannering, F.L.2
  • 11
    • 40149086544 scopus 로고    scopus 로고
    • Quantile regression provides a fuller analysis of speed data
    • Hewson P, (2008) Quantile regression provides a fuller analysis of speed data. Accident Analysis & Prevention 40(2): 502–510.
    • (2008) Accident Analysis & Prevention , vol.40 , Issue.2 , pp. 502-510
    • Hewson, P.1
  • 13
    • 84896298672 scopus 로고    scopus 로고
    • Time-varying effects of influential factors on incident clearance time using a non-proportional hazard-based model
    • Hou L, Lao Y, Wang Y, (2014) Time-varying effects of influential factors on incident clearance time using a non-proportional hazard-based model. Transportation Research Part A: Policy and Practice 63: 12–24.
    • (2014) Transportation Research Part A: Policy and Practice , vol.63 , pp. 12-24
    • Hou, L.1    Lao, Y.2    Wang, Y.3
  • 14
    • 0026209335 scopus 로고
    • Analysis of the frequency and duration of freeway accidents in Seattle
    • Jones B, Janssen L, and Mannering F, (1991) Analysis of the frequency and duration of freeway accidents in Seattle. Accident Analysis & Prevention 23(4): 239–255.
    • (1991) Accident Analysis & Prevention , vol.23 , Issue.4 , pp. 239-255
    • Jones, B.1    Janssen, L.2    Mannering, F.3
  • 16
    • 76549135340 scopus 로고    scopus 로고
    • Are incident durations and secondary incidents interdependent?
    • Khattak A, Wang X, and Zhang H, (2009) Are incident durations and secondary incidents interdependent? Transportation Research Record 2099: 39–49.
    • (2009) Transportation Research Record , vol.2099 , pp. 39-49
    • Khattak, A.1    Wang, X.2    Zhang, H.3
  • 17
    • 0005367338 scopus 로고    scopus 로고
    • A comparative analysis of incident service time on urban freeways
    • Kim HJ, and Choi HK, (2001) A comparative analysis of incident service time on urban freeways. IATSS Research 25(1): 62–72.
    • (2001) IATSS Research , vol.25 , Issue.1 , pp. 62-72
    • Kim, H.J.1    Choi, H.K.2
  • 18
    • 84855687049 scopus 로고    scopus 로고
    • Development of a hybrid prediction model for freeway incident duration: a case study in Maryland
    • Kim W, and Chang GL, (2012) Development of a hybrid prediction model for freeway incident duration: a case study in Maryland. International Journal of Intelligent Transportation Systems Research 10(1): 22–33.
    • (2012) International Journal of Intelligent Transportation Systems Research , vol.10 , Issue.1 , pp. 22-33
    • Kim, W.1    Chang, G.L.2
  • 20
    • 0005790567 scopus 로고    scopus 로고
    • Quantile regression for duration data: a reappraisal of the Pennsylvania reemployment bonus experiments
    • Fitzenberger B, Koenker R, and Machado JAF, (eds), Springer, Berlin, Germany, and,. In, (eds))
    • Koenker R, and Bilias Y, (2002) Quantile regression for duration data: a reappraisal of the Pennsylvania reemployment bonus experiments. In Economic Applications of Quantile Regression (Fitzenberger B, Koenker R, and Machado JAF, (eds)). Springer, Berlin, Germany, pp. 199–220.
    • (2002) Economic Applications of Quantile Regression , pp. 199-220
    • Koenker, R.1    Bilias, Y.2
  • 21
    • 1542784241 scopus 로고    scopus 로고
    • Reappraising medfly longevity: a quantile regression survival analysis
    • Koenker R, and Geling O, (2001) Reappraising medfly longevity: a quantile regression survival analysis. Journal of the American Statistical Association 96(454): 458–468.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 458-468
    • Koenker, R.1    Geling, O.2
  • 22
    • 31644451442 scopus 로고    scopus 로고
    • Influential factors in freeway crash response and clearance times by emergency management services in peak periods
    • Lee JT, and Fazio J, (2005) Influential factors in freeway crash response and clearance times by emergency management services in peak periods. Traffic Injury Prevention 6(4): 331–339.
    • (2005) Traffic Injury Prevention , vol.6 , Issue.4 , pp. 331-339
    • Lee, J.T.1    Fazio, J.2
  • 23
    • 84926419255 scopus 로고    scopus 로고
    • Competing risks analysis on traffic accident duration time
    • Li R, and Guo M, (2015) Competing risks analysis on traffic accident duration time. Journal of Advanced Transportation 49(3), 402–415.
    • (2015) Journal of Advanced Transportation , vol.49 , Issue.3 , pp. 402-415
    • Li, R.1    Guo, M.2
  • 24
    • 84918781090 scopus 로고    scopus 로고
    • Competing risks mixture model for traffic incident duration prediction
    • Li R, Pereira FC, and Ben-Akiva ME, (2015) Competing risks mixture model for traffic incident duration prediction. Accident Analysis & Prevention 75: 192–201.
    • (2015) Accident Analysis & Prevention , vol.75 , pp. 192-201
    • Li, R.1    Pereira, F.C.2    Ben-Akiva, M.E.3
  • 25
    • 29144452541 scopus 로고    scopus 로고
    • Exploring transition data through quantile regression methods: an application to US unemployment duration
    • Dodge, (ed), Springer, Berlin, Germany, and,. In, (ed.))
    • Machado JA, and Portugal P, (2002) Exploring transition data through quantile regression methods: an application to US unemployment duration. In Statistical Data Analysis Based on the L1-Norm and Related Methods (Dodge Y, (ed.)). Springer, Berlin, Germany, pp. 77–94.
    • (2002) Statistical Data Analysis Based on the L1-Norm and Related Methods , pp. 77-94
    • Machado, J.A.1    Portugal, P.2
  • 26
    • 84964907242 scopus 로고    scopus 로고
    • Unobserved heterogeneity and the statistical analysis of highway accident data
    • Mannering FL, Shankar V, and Bhat CR, (2016) Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods in Accident Research 11: 1–16.
    • (2016) Analytic Methods in Accident Research , vol.11 , pp. 1-16
    • Mannering, F.L.1    Shankar, V.2    Bhat, C.R.3
  • 29
    • 84869149564 scopus 로고    scopus 로고
    • Quantile effects of causal factors on crash distributions
    • Qin X, (2012) Quantile effects of causal factors on crash distributions. Transportation Research Record 2279: 40–46.
    • (2012) Transportation Research Record , vol.2279 , pp. 40-46
    • Qin, X.1
  • 30
    • 80052677150 scopus 로고    scopus 로고
    • Conditional quantile analysis for crash count data
    • Qin X, and Reyes PE, (2011) Conditional quantile analysis for crash count data. Journal of Transportation Engineering 137(9): 601–607.
    • (2011) Journal of Transportation Engineering , vol.137 , Issue.9 , pp. 601-607
    • Qin, X.1    Reyes, P.E.2
  • 33
    • 84922354670 scopus 로고    scopus 로고
    • Application of nonparametric regression in predicting traffic incident duration
    • Wang S, Li R, and Guo M, (2015) Application of nonparametric regression in predicting traffic incident duration. Transport, http://dx.doi.org/10.3846/16484142.2015.1004104.
    • (2015) Transport
    • Wang, S.1    Li, R.2    Guo, M.3
  • 34
    • 84896275187 scopus 로고    scopus 로고
    • Analysis of crash data using quantile regression for counts
    • Wu H, Gao L, and Zhang Z, (2013a) Analysis of crash data using quantile regression for counts. Journal of Transportation Engineering 140(4).
    • (2013) Journal of Transportation Engineering , vol.140 , Issue.4
    • Wu, H.1    Gao, L.2    Zhang, Z.3
  • 35
    • 84881657758 scopus 로고    scopus 로고
    • The effect of earlier or automatic collision notification on traffic mortality by survival analysis
    • Wu J, Subramanian R, Craig M, Starnes M, and Longthorne A, (2013b) The effect of earlier or automatic collision notification on traffic mortality by survival analysis. Traffic Injury Prevention 14(sup1): S50–S57.
    • (2013) Traffic Injury Prevention , vol.14 , Issue.sup1 , pp. S50-S57
    • Wu, J.1    Subramanian, R.2    Craig, M.3    Starnes, M.4    Longthorne, A.5
  • 36
    • 80053311628 scopus 로고    scopus 로고
    • Traffic incident duration prediction based on support vector regression
    • Nanjing, China, and
    • Wu WW, Chen SY, and Zheng CJ, (2011) Traffic incident duration prediction based on support vector regression. Proceedings of ICCTP 2011, Nanjing, China, pp. 2412–2421.
    • (2011) Proceedings of ICCTP 2011 , pp. 2412-2421
    • Wu, W.W.1    Chen, S.Y.2    Zheng, C.J.3
  • 37
    • 76249127081 scopus 로고    scopus 로고
    • Identifying secondary crashes and their contributing factors
    • Zhan C, Gan A, and Hadi M, (2009) Identifying secondary crashes and their contributing factors. Transportation Research Record 2102: 68–75.
    • (2009) Transportation Research Record , vol.2102 , pp. 68-75
    • Zhan, C.1    Gan, A.2    Hadi, M.3
  • 39
    • 84953426285 scopus 로고    scopus 로고
    • Application of finite mixture models for analysing freeway incident clearance time
    • Zou Y, Henrickson K, Lord D, Wang Y, and Xu K, (2016) Application of finite mixture models for analysing freeway incident clearance time. Transportmetrica A: Transport Science 12(2): 99–115.
    • (2016) Transportmetrica A: Transport Science , vol.12 , Issue.2 , pp. 99-115
    • Zou, Y.1    Henrickson, K.2    Lord, D.3    Wang, Y.4    Xu, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.