메뉴 건너뛰기




Volumn 143, Issue , 2018, Pages 200-210

An efficient method for robust projection matrix design

Author keywords

High dimensional dictionary; Mutual coherence; Robust projection matrix; Sparse representation error (SRE)

Indexed keywords

COMPRESSED SENSING; IMAGE PROCESSING;

EID: 85029398127     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2017.09.007     Document Type: Article
Times cited : (35)

References (33)
  • 1
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candès, E.J., Romberg, J., Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52 (2006), 489–509.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 2
    • 33947416035 scopus 로고    scopus 로고
    • Near optimal signal recovery from random projections: universal encoding strategies
    • Candès, E.J., Tao, T., Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52 (2006), 5406–5425.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 5406-5425
    • Candès, E.J.1    Tao, T.2
  • 3
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.L., Compressed sensing. IEEE Trans. Inf. Theory 52 (2006), 1289–1306.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 5
    • 84892329327 scopus 로고    scopus 로고
    • Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
    • Springer Science & Business Media
    • Elad, M., Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. 2010, Springer Science & Business Media.
    • (2010)
    • Elad, M.1
  • 6
    • 80455136314 scopus 로고    scopus 로고
    • Compressed Sensing: Theory and Application
    • Cambridge University Press
    • Eldar, Y.C., Kutyniok, G., Compressed Sensing: Theory and Application. May 2012, Cambridge University Press.
    • (2012)
    • Eldar, Y.C.1    Kutyniok, G.2
  • 8
    • 84875655001 scopus 로고    scopus 로고
    • Learning incoherent dictionaries for sparse approximation using iterative projections and rotations
    • Barchiesi, D., Plumbley, M.D., Learning incoherent dictionaries for sparse approximation using iterative projections and rotations. IEEE Trans. Signal Process. 61 (2013), 2055–2065.
    • (2013) IEEE Trans. Signal Process. , vol.61 , pp. 2055-2065
    • Barchiesi, D.1    Plumbley, M.D.2
  • 10
    • 36749022762 scopus 로고    scopus 로고
    • Optimized projections for compressed sensing
    • Elad, M., Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55 (2007), 5695–5702.
    • (2007) IEEE Trans. Signal Process. , vol.55 , pp. 5695-5702
    • Elad, M.1
  • 11
    • 83955164191 scopus 로고    scopus 로고
    • A gradient-based alternating minimzation approach for optimization of the measurement matrix in compressive sensing
    • Abolghasemi, V., Ferdowsi, S., Sanei, S., A gradient-based alternating minimzation approach for optimization of the measurement matrix in compressive sensing. Signal Process. 94 (2012), 999–1009.
    • (2012) Signal Process. , vol.94 , pp. 999-1009
    • Abolghasemi, V.1    Ferdowsi, S.2    Sanei, S.3
  • 14
    • 84877903708 scopus 로고    scopus 로고
    • On projection matrix optimization for compressive sensing systems
    • Li, G., Zhu, Z.H., Yang, D.H., Chang, L.P., Bai, H., On projection matrix optimization for compressive sensing systems. IEEE Trans. Signal Process. 61 (2013), 2887–2898.
    • (2013) IEEE Trans. Signal Process. , vol.61 , pp. 2887-2898
    • Li, G.1    Zhu, Z.H.2    Yang, D.H.3    Chang, L.P.4    Bai, H.5
  • 15
  • 16
    • 84956881607 scopus 로고    scopus 로고
    • An efficient algorithm for designing projection matrix in compressive sensing based on alternating optimization
    • Hong, T., Bai, H., Li, S., Zhu, Z., An efficient algorithm for designing projection matrix in compressive sensing based on alternating optimization. Signal Process. 125 (2016), 9–20.
    • (2016) Signal Process. , vol.125 , pp. 9-20
    • Hong, T.1    Bai, H.2    Li, S.3    Zhu, Z.4
  • 17
    • 85034957018 scopus 로고    scopus 로고
    • Approximating sampled sinusoids and multiband signals using multiband modulated DPSS dictionaries
    • Zhu, Z., Wakin, M.B., Approximating sampled sinusoids and multiband signals using multiband modulated DPSS dictionaries. J. Fourier Anal. Appl., 2016, 1–40.
    • (2016) J. Fourier Anal. Appl. , pp. 1-40
    • Zhu, Z.1    Wakin, M.B.2
  • 19
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon, M., Elad, M., Bruckstein, A., K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54 (2006), 4311–4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 21
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • Cambridge Univ. Press
    • Botou, L., Online algorithms and stochastic approximations. Online Learning and Neural Networks, 1998, Cambridge Univ. Press.
    • (1998) Online Learning and Neural Networks
    • Botou, L.1
  • 23
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mairal, J., Bach, F., Ponce, J., Sapiro, G., Online learning for matrix factorization and sparse coding. J. Mach. Learn. 11 (2010), 19–60.
    • (2010) J. Mach. Learn. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 25
    • 85029352193 scopus 로고    scopus 로고
    • minfunc: unconstrained differentiale multivariate optimization in matlab
    • M. Schmidt, minfunc: unconstrained differentiale multivariate optimization in matlab, 2005. https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.
    • (2005)
    • Schmidt, M.1
  • 27
    • 85012014439 scopus 로고    scopus 로고
    • Large inpainting of face images with trainlets
    • Sulam, J., Elad, M., Large inpainting of face images with trainlets. IEEE Signal Process. Lett. 23 (2016), 1839–1843.
    • (2016) IEEE Signal Process. Lett. , vol.23 , pp. 1839-1843
    • Sulam, J.1    Elad, M.2
  • 28
    • 67649842407 scopus 로고    scopus 로고
    • Learning to sense sparse signals: simultaneous sensing matrix ans sparsifying dictionary optimization
    • Duarte-Carvajalino, J.M., Sapiro, G., Learning to sense sparse signals: simultaneous sensing matrix ans sparsifying dictionary optimization. IEEE Trans. Image Process. 18 (2009), 1395–1408.
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 1395-1408
    • Duarte-Carvajalino, J.M.1    Sapiro, G.2
  • 29
    • 85024485361 scopus 로고    scopus 로고
    • Statistical Inference, Vol. 2
    • Pacific Grove CA: Duxbury
    • Casella, G., Roger, L.B., Statistical Inference, Vol. 2. 2002, Pacific Grove, CA: Duxbury.
    • (2002)
    • Casella, G.1    Roger, L.B.2
  • 30
    • 0003982971 scopus 로고    scopus 로고
    • Numerical Optimization
    • Springer
    • Nocedal, J., Wright, S., Numerical Optimization. 2006, Springer.
    • (2006)
    • Nocedal, J.1    Wright, S.2
  • 32
    • 68949221380 scopus 로고    scopus 로고
    • Efficient Implementation of the k-SVD Algorithm and the Batch-OMP Method
    • Department of Computer Science, Technion, Israel
    • Rubinstein, R., Zibulevsky, M., Elad, M., Efficient Implementation of the k-SVD Algorithm and the Batch-OMP Method. Tech. Rep., 2008, Department of Computer Science, Technion, Israel.
    • (2008) Tech. Rep.
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.