메뉴 건너뛰기




Volumn 247, Issue , 2017, Pages 207-220

Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches

Author keywords

Google earth engine; Landsat; Maize; Yield estimation

Indexed keywords

ACCURACY ASSESSMENT; AGRICULTURAL MODELING; CALIBRATION; COMPUTER SIMULATION; CROP YIELD; DATA PROCESSING; DATA SET; INFORMATION TECHNOLOGY; LANDSAT; MAIZE; PHENOLOGY; PHYTOMASS; RAINFED AGRICULTURE; RESOLUTION; SATELLITE DATA; SATELLITE IMAGERY; WEATHER;

EID: 85029355039     PISSN: 01681923     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.agrformet.2017.08.001     Document Type: Article
Times cited : (98)

References (49)
  • 1
    • 84874377650 scopus 로고    scopus 로고
    • World Agriculture Towards 2030/2050: the 2012 Revision. ESA Working Paper No. 12-03
    • FAO Rome
    • Alexandratos, N., Bruinsma, J., World Agriculture Towards 2030/2050: the 2012 Revision. ESA Working Paper No. 12-03. 2012, FAO, Rome.
    • (2012)
    • Alexandratos, N.1    Bruinsma, J.2
  • 3
    • 84899653728 scopus 로고    scopus 로고
    • Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the midwestern United States
    • Archontoulis, S.V., Miguez, F.E., Moore, K.J., Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the midwestern United States. Agron. J., 106, 2014, 1025, 10.2134/agronj2013.0421.
    • (2014) Agron. J. , vol.106 , pp. 1025
    • Archontoulis, S.V.1    Miguez, F.E.2    Moore, K.J.3
  • 5
    • 84874788283 scopus 로고    scopus 로고
    • Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs
    • Atzberger, C., Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sens. 5 (2013), 949–981, 10.3390/rs5020949.
    • (2013) Remote Sens. , vol.5 , pp. 949-981
    • Atzberger, C.1
  • 6
    • 85011321611 scopus 로고    scopus 로고
    • Towards fine resolution global maps of crop yields: testing multiple methods and satellites in three countries
    • Azzari, G., Jain, M., Lobell, D.B., Towards fine resolution global maps of crop yields: testing multiple methods and satellites in three countries. Remote Sens. Environ., 2017, 10.1016/j.rse.2017.04.014.
    • (2017) Remote Sens. Environ.
    • Azzari, G.1    Jain, M.2    Lobell, D.B.3
  • 7
    • 84901927473 scopus 로고    scopus 로고
    • How do various maize crop models vary in their responses to climate change factors?
    • Bassu, S., Brisson, N., Durand, J.-L.L., Boote, K., Lizaso, J., et al. How do various maize crop models vary in their responses to climate change factors?. Glob. Change Biol. 20 (2014), 2301–2320, 10.1111/gcb.12520.
    • (2014) Glob. Change Biol. , vol.20 , pp. 2301-2320
    • Bassu, S.1    Brisson, N.2    Durand, J.-L.L.3    Boote, K.4    Lizaso, J.5
  • 8
    • 84992573825 scopus 로고    scopus 로고
    • Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil
    • Battisti, R., Sentelhas, P.C., Boote, K.J., Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crop Res. 200 (2017), 28–37, 10.1016/j.fcr.2016.10.004.
    • (2017) Field Crop Res. , vol.200 , pp. 28-37
    • Battisti, R.1    Sentelhas, P.C.2    Boote, K.J.3
  • 9
    • 7744227967 scopus 로고    scopus 로고
    • Frequency analysis of yield for delineating yield response zones
    • Diker, K., Heermann, D.F., Brodahl, M.K., Frequency analysis of yield for delineating yield response zones. Precis. Agric. 5 (2004), 435–444, 10.1007/s11119-004-5318-9.
    • (2004) Precis. Agric. , vol.5 , pp. 435-444
    • Diker, K.1    Heermann, D.F.2    Brodahl, M.K.3
  • 10
    • 84912067885 scopus 로고    scopus 로고
    • A generic framework for evaluating hybrid models by reuse and composition – a case study on soil temperature simulation
    • Donatelli, M., Bregaglio, S., Confalonieri, R., De Mascellis, R., Acutis, M., A generic framework for evaluating hybrid models by reuse and composition – a case study on soil temperature simulation. Environ. Model. Softw. 62 (2014), 478–486, 10.1016/j.envsoft.2014.04.011.
    • (2014) Environ. Model. Softw. , vol.62 , pp. 478-486
    • Donatelli, M.1    Bregaglio, S.2    Confalonieri, R.3    De Mascellis, R.4    Acutis, M.5
  • 11
    • 85027950286 scopus 로고    scopus 로고
    • Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information
    • Franch, B., Vermote, E.F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., Justice, C., Sobrino, J.A., Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sens. Environ. 161 (2015), 131–148, 10.1016/j.rse.2015.02.014.
    • (2015) Remote Sens. Environ. , vol.161 , pp. 131-148
    • Franch, B.1    Vermote, E.F.2    Becker-Reshef, I.3    Claverie, M.4    Huang, J.5    Zhang, J.6    Justice, C.7    Sobrino, J.A.8
  • 14
    • 84975311997 scopus 로고    scopus 로고
    • 2O emission in surface litter and near-surface soil of a managed pasture: modelling and measurements
    • 2O emission in surface litter and near-surface soil of a managed pasture: modelling and measurements. Biogeosciences 13 (2016), 3549–3571, 10.5194/bg-13-3549-2016.
    • (2016) Biogeosciences , vol.13 , pp. 3549-3571
    • Grant, R.F.1    Neftel, A.2    Calanca, P.3
  • 15
    • 84955731178 scopus 로고    scopus 로고
    • Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence
    • Guan, K., Berry, J.A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., Lobell, D.B., Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Glob. Change Biol. 22 (2016), 716–726, 10.1111/gcb.13136.
    • (2016) Glob. Change Biol. , vol.22 , pp. 716-726
    • Guan, K.1    Berry, J.A.2    Zhang, Y.3    Joiner, J.4    Guanter, L.5    Badgley, G.6    Lobell, D.B.7
  • 16
    • 59249088046 scopus 로고    scopus 로고
    • Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt?
    • Hammer, G.L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., Cooper, M., Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt?. Crop Sci., 49, 2009, 299, 10.2135/cropsci2008.03.0152.
    • (2009) Crop Sci. , vol.49 , pp. 299
    • Hammer, G.L.1    Dong, Z.2    McLean, G.3    Doherty, A.4    Messina, C.5    Schussler, J.6    Zinselmeier, C.7    Paszkiewicz, S.8    Cooper, M.9
  • 17
    • 84930393785 scopus 로고    scopus 로고
    • Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: application for wheat in Central Europe
    • Hank, T., Bach, H., Mauser, W., Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: application for wheat in Central Europe. Remote Sens. 7 (2015), 3934–3965, 10.3390/rs70403934.
    • (2015) Remote Sens. , vol.7 , pp. 3934-3965
    • Hank, T.1    Bach, H.2    Mauser, W.3
  • 18
    • 84912069019 scopus 로고    scopus 로고
    • APSIM –evolution towards a new generation of agricultural systems simulation
    • Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., et al. APSIM –evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62 (2014), 327–350, 10.1016/j.envsoft.2014.07.009.
    • (2014) Environ. Model. Softw. , vol.62 , pp. 327-350
    • Holzworth, D.P.1    Huth, N.I.2    deVoil, P.G.3    Zurcher, E.J.4    Herrmann, N.I.5
  • 19
    • 84923040982 scopus 로고    scopus 로고
    • Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model
    • Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., Su, W., Zhang, X., Zhu, D., Wu, W., Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 204 (2015), 106–121, 10.1016/j.agrformet.2015.02.001.
    • (2015) Agric. For. Meteorol. , vol.204 , pp. 106-121
    • Huang, J.1    Tian, L.2    Liang, S.3    Ma, H.4    Becker-Reshef, I.5    Huang, Y.6    Su, W.7    Zhang, X.8    Zhu, D.9    Wu, W.10
  • 20
    • 84882641525 scopus 로고    scopus 로고
    • Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction
    • Ines, A.V.M., Das, N.N., Hansen, J.W., Njoku, E.G., Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 138 (2013), 149–164, 10.1016/j.rse.2013.07.018.
    • (2013) Remote Sens. Environ. , vol.138 , pp. 149-164
    • Ines, A.V.M.1    Das, N.N.2    Hansen, J.W.3    Njoku, E.G.4
  • 21
    • 85001754594 scopus 로고    scopus 로고
    • Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system
    • Jin, Z., Prasad, R., Shriver, J., Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system. Precis. Agric., 2016, 10.1007/s11119-016-9488-z.
    • (2016) Precis. Agric.
    • Jin, Z.1    Prasad, R.2    Shriver, J.3
  • 22
    • 85027940414 scopus 로고    scopus 로고
    • Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches
    • Jin, Z., Zhuang, Q., Tan, Z., Dukes, J.S., Zheng, B., Melillo, J.M., Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Change Biol. 22 (2016), 3112–3126, 10.1111/gcb.13376.
    • (2016) Glob. Change Biol. , vol.22 , pp. 3112-3126
    • Jin, Z.1    Zhuang, Q.2    Tan, Z.3    Dukes, J.S.4    Zheng, B.5    Melillo, J.M.6
  • 23
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson, D.M., An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141 (2014), 116–128, 10.1016/j.rse.2013.10.027.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 25
    • 0000888286 scopus 로고
    • Modelling the fully expanded area of maize leaves
    • Keating, B.A., Wafula, B.M., Modelling the fully expanded area of maize leaves. Field Crop Res. 29 (1992), 163–176, 10.1016/0378-4290(92)90085-N.
    • (1992) Field Crop Res. , vol.29 , pp. 163-176
    • Keating, B.A.1    Wafula, B.M.2
  • 26
    • 84869019959 scopus 로고    scopus 로고
    • Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM
    • Kim, S.H., Yang, Y., Timlin, D.J., Fleisher, D.H., Dathe, A., Reddy, V.R., Staver, K., Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agron. J. 104 (2012), 1523–1537, 10.2134/agronj2011.0321.
    • (2012) Agron. J. , vol.104 , pp. 1523-1537
    • Kim, S.H.1    Yang, Y.2    Timlin, D.J.3    Fleisher, D.H.4    Dathe, A.5    Reddy, V.R.6    Staver, K.7
  • 27
    • 84904362057 scopus 로고    scopus 로고
    • Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies
    • Koester, R.P., Skoneczka, J.A., Cary, T.R., Diers, B.W., Ainsworth, E.A., Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J. Exp. Bot. 65 (2014), 3311–3321, 10.1093/jxb/eru187.
    • (2014) J. Exp. Bot. , vol.65 , pp. 3311-3321
    • Koester, R.P.1    Skoneczka, J.A.2    Cary, T.R.3    Diers, B.W.4    Ainsworth, E.A.5
  • 28
    • 84908252705 scopus 로고    scopus 로고
    • Predicting maize phenology: intercomparison of functions for developmental response to temperature
    • Kumudini, S., Andrade, F.H., Boote, K.J., Brown, G.A., Dzotsi, K.A., et al. Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agron. J. 106 (2014), 2087–2097, 10.2134/agronj14.0200.
    • (2014) Agron. J. , vol.106 , pp. 2087-2097
    • Kumudini, S.1    Andrade, F.H.2    Boote, K.J.3    Brown, G.A.4    Dzotsi, K.A.5
  • 31
    • 85011396320 scopus 로고    scopus 로고
    • Satellite detection of rising maize yield heterogeneity in the US Midwest
    • Lobell, D.B., Azzari, G., Satellite detection of rising maize yield heterogeneity in the US Midwest. Environ. Res. Lett., 12, 2017, 014014, 10.1088/1748-9326/aa5371.
    • (2017) Environ. Res. Lett. , vol.12 , pp. 014014
    • Lobell, D.B.1    Azzari, G.2
  • 33
    • 84875549888 scopus 로고    scopus 로고
    • The use of satellite data for crop yield gap analysis
    • Lobell, D.B., The use of satellite data for crop yield gap analysis. Field Crop Res. 143 (2013), 56–64, 10.1016/j.fcr.2012.08.008.
    • (2013) Field Crop Res. , vol.143 , pp. 56-64
    • Lobell, D.B.1
  • 34
    • 74349109348 scopus 로고    scopus 로고
    • Breeding maize for a bioeconomy: a literature survey examining harvest index and stover yield and their relationship to grain yield
    • Lorenz, A.J., Gustafson, T.J., Coors, J.G., de Leon, N., Breeding maize for a bioeconomy: a literature survey examining harvest index and stover yield and their relationship to grain yield. Crop Sci. 50 (2010), 1–12, 10.2135/cropsci2009.02.0086.
    • (2010) Crop Sci. , vol.50 , pp. 1-12
    • Lorenz, A.J.1    Gustafson, T.J.2    Coors, J.G.3    de Leon, N.4
  • 36
    • 84923027677 scopus 로고    scopus 로고
    • Multimodel ensembles of wheat growth: many models are better than one
    • Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., et al. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21 (2015), 911–925, 10.1111/gcb.12768.
    • (2015) Glob. Change Biol. , vol.21 , pp. 911-925
    • Martre, P.1    Wallach, D.2    Asseng, S.3    Ewert, F.4    Jones, J.W.5
  • 38
    • 0025640541 scopus 로고
    • Phenology and leaf-area development in a tropical grain sorghum
    • Muchow, R.C., Carberry, P.S., Phenology and leaf-area development in a tropical grain sorghum. Field Crop Res. 23 (1990), 221–237, 10.1016/0378-4290(90)90056-H.
    • (1990) Field Crop Res. , vol.23 , pp. 221-237
    • Muchow, R.C.1    Carberry, P.S.2
  • 39
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps
    • Mulla, D.J., Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114 (2013), 358–371, 10.1016/j.biosystemseng.2012.08.009.
    • (2013) Biosyst. Eng. , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 40
    • 85167041746 scopus 로고    scopus 로고
    • Crop Production 2016 Summary. Washington, USA.
    • NASS (2017) Crop Production 2016 Summary. Washington, USA.
    • (2017)
    • NASS1
  • 41
    • 84868704441 scopus 로고    scopus 로고
    • Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity
    • Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., Rundquist, D., Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity. Agron. J. 104 (2012), 1336–1347, 10.2134/agronj2012.0065.
    • (2012) Agron. J. , vol.104 , pp. 1336-1347
    • Nguy-Robertson, A.1    Gitelson, A.2    Peng, Y.3    Viña, A.4    Arkebauer, T.5    Rundquist, D.6
  • 42
    • 80051774000 scopus 로고    scopus 로고
    • Application of vegetation indices for agricultural crop yield prediction using neural network techniques
    • Panda, S.S., Ames, D.P., Panigrahi, S., Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2 (2010), 673–696, 10.3390/rs2030673.
    • (2010) Remote Sens. , vol.2 , pp. 673-696
    • Panda, S.S.1    Ames, D.P.2    Panigrahi, S.3
  • 44
    • 84897374226 scopus 로고    scopus 로고
    • Near real-time prediction of U.S. corn yields based on time-series MODIS data
    • Sakamoto, T., Gitelson, A.A., Arkebauer, T.J., Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sens. Environ. 147 (2014), 219–231, 10.1016/j.rse.2014.03.008.
    • (2014) Remote Sens. Environ. , vol.147 , pp. 219-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 45
    • 84875982276 scopus 로고    scopus 로고
    • Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data Set [WWW Document]
    • Oak Ridge Natl. Lab. Distrib. Act. Arch. Center Oak Ridge, Tennessee, USA
    • Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R., Cook, R.B., Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data Set [WWW Document]. 2014, Oak Ridge Natl. Lab. Distrib. Act. Arch. Center, Oak Ridge, Tennessee, USA, 10.3334/ORNLDAAC/1219.
    • (2014)
    • Thornton, P.E.1    Thornton, M.M.2    Mayer, B.W.3    Wilhelmi, N.4    Wei, Y.5    Devarakonda, R.6    Cook, R.B.7
  • 46
    • 84908892486 scopus 로고    scopus 로고
    • Published Crop-specific Data Layer [Online]
    • USDA-NASS Washington, DC Available at (Accessed 09/01/2016; verified 02/26/2017)
    • USDA National Agricultural Statistics Service Cropland Data Layer, Published Crop-specific Data Layer [Online]. 2014, USDA-NASS, Washington, DC Available at https://nassgeodata.gmu.edu/CropScape/ (Accessed 09/01/2016; verified 02/26/2017).
    • (2014)
    • USDA National Agricultural Statistics Service Cropland Data Layer1
  • 47
    • 85166993443 scopus 로고    scopus 로고
    • Farms and Land in Farms 2016 Summary. Washington, USA.
    • USDA (2017) Farms and Land in Farms 2016 Summary. Washington, USA.
    • (2017)
    • USDA1
  • 48
  • 49
    • 85011586023 scopus 로고    scopus 로고
    • Improvements to the hybrid-maize model for simulating maize yields in harsh rainfed environments
    • Yang, H.S., Grassini, P., Cassman, K.G., Aiken, R.M., Coyne, P.I., Improvements to the hybrid-maize model for simulating maize yields in harsh rainfed environments. Field Crop Res. 224 (2017), 180–190, 10.1016/j.fcr.2017.01.019.
    • (2017) Field Crop Res. , vol.224 , pp. 180-190
    • Yang, H.S.1    Grassini, P.2    Cassman, K.G.3    Aiken, R.M.4    Coyne, P.I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.