-
1
-
-
0033197383
-
Linear-scaling ab-initio calculations for large and complex systems
-
Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A., Soler, J.M., Linear-scaling ab-initio calculations for large and complex systems. Physica Status Solidi (b) 215:1 (1999), 809–817.
-
(1999)
Physica Status Solidi (b)
, vol.215
, Issue.1
, pp. 809-817
-
-
Artacho, E.1
Sánchez-Portal, D.2
Ordejón, P.3
García, A.4
Soler, J.M.5
-
2
-
-
22944446425
-
Introducing ONETEP: linear-scaling density functional simulations on parallel computers
-
Skylaris, C.-K., Haynes, P.D., Mostofi, A.A., Payne, M.C., Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys., 122(8), 2005, 084119.
-
(2005)
J. Chem. Phys.
, vol.122
, Issue.8
, pp. 084119
-
-
Skylaris, C.-K.1
Haynes, P.D.2
Mostofi, A.A.3
Payne, M.C.4
-
3
-
-
77957587959
-
Calculations for millions of atoms with density functional theory: linear scaling shows its potential
-
Bowler, D.R., Miyazaki, T., Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J. Phys.: Condensed Matter, 22(7), 2010, 074207.
-
(2010)
J. Phys.: Condensed Matter
, vol.22
, Issue.7
, pp. 074207
-
-
Bowler, D.R.1
Miyazaki, T.2
-
5
-
-
84939219377
-
Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials
-
Artrith, N., Kolpak, A.M., Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput. Mater. Sci. 110 (2015), 20–28.
-
(2015)
Comput. Mater. Sci.
, vol.110
, pp. 20-28
-
-
Artrith, N.1
Kolpak, A.M.2
-
6
-
-
84883157867
-
Machine-learning approach for one-and two-body corrections to density functional theory: applications to molecular and condensed water
-
Bartók, A.P., Gillan, M.J., Manby, F.R., Csányi, G., Machine-learning approach for one-and two-body corrections to density functional theory: applications to molecular and condensed water. Phys. Rev. B, 88(5), 2013, 054104.
-
(2013)
Phys. Rev. B
, vol.88
, Issue.5
, pp. 054104
-
-
Bartók, A.P.1
Gillan, M.J.2
Manby, F.R.3
Csányi, G.4
-
7
-
-
77950441864
-
Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons
-
Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G., Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104, 2010, 136403, 10.1103/PhysRevLett.104.136403.
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 136403
-
-
Bartók, A.P.1
Payne, M.C.2
Kondor, R.3
Csányi, G.4
-
8
-
-
80053512754
-
Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
-
Behler, J., Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13:40 (2011), 17930–17955.
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, Issue.40
, pp. 17930-17955
-
-
Behler, J.1
-
9
-
-
84899441459
-
Representing potential energy surfaces by high-dimensional neural network potentials
-
Behler, J., Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys.: Condensed Matter, 26(18), 2014, 183001.
-
(2014)
J. Phys.: Condensed Matter
, vol.26
, Issue.18
, pp. 183001
-
-
Behler, J.1
-
10
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
Behler, J., Parrinello, M., Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14), 2007, 146401.
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.14
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
11
-
-
84977837443
-
Neural network and ReaxFF comparison for Au properties
-
Boes, J.R., Groenenboom, M.C., Keith, J.A., Kitchin, J.R., Neural network and ReaxFF comparison for Au properties. Int. J. Quantum Chem. 116:13 (2016), 979–987.
-
(2016)
Int. J. Quantum Chem.
, vol.116
, Issue.13
, pp. 979-987
-
-
Boes, J.R.1
Groenenboom, M.C.2
Keith, J.A.3
Kitchin, J.R.4
-
12
-
-
84984605036
-
Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
-
Dolgirev, P.E., Kruglov, I.A., Oganov, A.R., Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv., 6(8), 2016, 085318.
-
(2016)
AIP Adv.
, vol.6
, Issue.8
, pp. 085318
-
-
Dolgirev, P.E.1
Kruglov, I.A.2
Oganov, A.R.3
-
13
-
-
84929346813
-
High-dimensional neural network potentials for organic reactions and an improved training algorithm
-
Gastegger, M., Marquetand, P., High-dimensional neural network potentials for organic reactions and an improved training algorithm. J. Chem. Theory Comput. 11:5 (2015), 2187–2198.
-
(2015)
J. Chem. Theory Comput.
, vol.11
, Issue.5
, pp. 2187-2198
-
-
Gastegger, M.1
Marquetand, P.2
-
14
-
-
84936774078
-
Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
-
Manzhos, S., Dawes, R., Carrington, T., Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces. Int. J. Quantum Chem. 115:16 (2015), 1012–1020.
-
(2015)
Int. J. Quantum Chem.
, vol.115
, Issue.16
, pp. 1012-1020
-
-
Manzhos, S.1
Dawes, R.2
Carrington, T.3
-
15
-
-
84925707827
-
Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials
-
Natarajan, S.K., Morawietz, T., Behler, J., Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials. Phys. Chem. Chem. Phys. 17:13 (2015), 8356–8371.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, Issue.13
, pp. 8356-8371
-
-
Natarajan, S.K.1
Morawietz, T.2
Behler, J.3
-
16
-
-
84989347241
-
Moment tensor potentials
-
Shapeev, A.V., Moment tensor potentials. Multiscale Model. Simul. 14:3 (2016), 1153–1173.
-
(2016)
Multiscale Model. Simul.
, vol.14
, Issue.3
, pp. 1153-1173
-
-
Shapeev, A.V.1
-
17
-
-
84907478718
-
Accuracy and transferability of Gaussian approximation potential models for tungsten
-
Szlachta, W.J., Bartók, A.P., Csányi, G., Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys. Rev. B, 90(10), 2014, 104108.
-
(2014)
Phys. Rev. B
, vol.90
, Issue.10
, pp. 104108
-
-
Szlachta, W.J.1
Bartók, A.P.2
Csányi, G.3
-
18
-
-
84921665310
-
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
-
Thompson, A., Swiler, L., Trott, C., Foiles, S., Tucker, G., Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285 (2015), 316–330, 10.1016/j.jcp.2014.12.018.
-
(2015)
J. Comput. Phys.
, vol.285
, pp. 316-330
-
-
Thompson, A.1
Swiler, L.2
Trott, C.3
Foiles, S.4
Tucker, G.5
-
19
-
-
84936846648
-
Crystal structure representations for machine learning models of formation energies
-
Faber, F., Lindmaa, A., von Lilienfeld, O.A., Armiento, R., Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115:16 (2015), 1094–1101.
-
(2015)
Int. J. Quantum Chem.
, vol.115
, Issue.16
, pp. 1094-1101
-
-
Faber, F.1
Lindmaa, A.2
von Lilienfeld, O.A.3
Armiento, R.4
-
20
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
Rupp, M., Tkatchenko, A., Müller, K.-R., Von Lilienfeld, O.A., Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108(5), 2012, 058301.
-
(2012)
Phys. Rev. Lett.
, vol.108
, Issue.5
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Von Lilienfeld, O.A.4
-
21
-
-
84862560607
-
Finding density functionals with machine learning
-
Snyder, J.C., Rupp, M., Hansen, K., Müller, K.-R., Burke, K., Finding density functionals with machine learning. Phys. Rev. Lett., 108(25), 2012, 253002.
-
(2012)
Phys. Rev. Lett.
, vol.108
, Issue.25
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.-R.4
Burke, K.5
-
22
-
-
85028924625
-
-
Machine learning in materials science: recent progress and emerging applications, Rev. Comput. Chem.
-
T. Mueller, A.G. Kusne, R. Ramprasad, Machine learning in materials science: recent progress and emerging applications, Rev. Comput. Chem.
-
-
-
Mueller, T.1
Kusne, A.G.2
Ramprasad, R.3
-
23
-
-
84878571921
-
On representing chemical environments
-
Bartók, A.P., Kondor, R., Csányi, G., On representing chemical environments. Phys. Rev. B, 87(18), 2013, 184115.
-
(2013)
Phys. Rev. B
, vol.87
, Issue.18
, pp. 184115
-
-
Bartók, A.P.1
Kondor, R.2
Csányi, G.3
-
24
-
-
79953856961
-
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
-
Behler, J., Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 134(7), 2011, 074106.
-
(2011)
J. Chem. Phys.
, vol.134
, Issue.7
, pp. 074106
-
-
Behler, J.1
-
25
-
-
85016436037
-
Ani-1: an extensible neural network potential with DFT accuracy at force field computational cost
-
Smith, J.S., Isayev, O., Roitberg, A.E., Ani-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 21:1 (2017), 124–127, 10.1039/C6SC05720A.
-
(2017)
Chem. Sci.
, vol.21
, Issue.1
, pp. 124-127
-
-
Smith, J.S.1
Isayev, O.2
Roitberg, A.E.3
-
26
-
-
84952845527
-
An implementation of artificial neural-network potentials for atomistic materials simulations: performance for tio 2
-
Artrith, N., Urban, A., An implementation of artificial neural-network potentials for atomistic materials simulations: performance for tio 2. Comput. Mater. Sci. 114 (2016), 135–150.
-
(2016)
Comput. Mater. Sci.
, vol.114
, pp. 135-150
-
-
Artrith, N.1
Urban, A.2
-
27
-
-
85014824497
-
Machine learning based interatomic potential for amorphous carbon
-
URL
-
Deringer, V.L., Csányi, G., Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B, 95, 2017, 094203, 10.1103/PhysRevB.95.094203 URL https://link.aps.org/doi/10.1103/PhysRevB.95.094203.
-
(2017)
Phys. Rev. B
, vol.95
, pp. 094203
-
-
Deringer, V.L.1
Csányi, G.2
-
28
-
-
84943744240
-
Learning scheme to predict atomic forces and accelerate materials simulations
-
Botu, V., Ramprasad, R., Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B, 92(9), 2015, 094306.
-
(2015)
Phys. Rev. B
, vol.92
, Issue.9
, pp. 094306
-
-
Botu, V.1
Ramprasad, R.2
-
29
-
-
84924365603
-
Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
-
Li, Z., Kermode, J.R., De Vita, A., Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett., 114, 2015, 096405, 10.1103/PhysRevLett.114.096405.
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 096405
-
-
Li, Z.1
Kermode, J.R.2
De Vita, A.3
-
30
-
-
85023752533
-
Accurate interatomic force fields via machine learning with covariant kernels
-
URL
-
Glielmo, A., Sollich, P., De Vita, A., Accurate interatomic force fields via machine learning with covariant kernels. Phys. Rev. B, 95, 2017, 214302, 10.1103/PhysRevB.95.214302 URL https://link.aps.org/doi/10.1103/PhysRevB.95.214302.
-
(2017)
Phys. Rev. B
, vol.95
, pp. 214302
-
-
Glielmo, A.1
Sollich, P.2
De Vita, A.3
-
31
-
-
85028937723
-
-
Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison
-
B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison, 2009.
-
(2009)
-
-
Settles, B.1
-
32
-
-
19644400912
-
Bayesian ensemble approach to error estimation of interatomic potentials
-
Frederiksen, S.L., Jacobsen, K.W., Brown, K.S., Sethna, J.P., Bayesian ensemble approach to error estimation of interatomic potentials. Phys. Rev. Lett., 93(16), 2004, 165501.
-
(2004)
Phys. Rev. Lett.
, vol.93
, Issue.16
, pp. 165501
-
-
Frederiksen, S.L.1
Jacobsen, K.W.2
Brown, K.S.3
Sethna, J.P.4
-
33
-
-
84936800621
-
Adaptive machine learning framework to accelerate ab initio molecular dynamics
-
Botu, V., Ramprasad, R., Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115:16 (2015), 1074–1083.
-
(2015)
Int. J. Quantum Chem.
, vol.115
, Issue.16
, pp. 1074-1083
-
-
Botu, V.1
Ramprasad, R.2
-
34
-
-
85009268750
-
A study of adatom ripening on an al (111) surface with machine learning force fields
-
Botu, V., Chapman, J., Ramprasad, R., A study of adatom ripening on an al (111) surface with machine learning force fields. Comput. Mater. Sci. 129 (2017), 332–335.
-
(2017)
Comput. Mater. Sci.
, vol.129
, pp. 332-335
-
-
Botu, V.1
Chapman, J.2
Ramprasad, R.3
-
35
-
-
84969701512
-
How to find a good submatrix
-
Word Scientific
-
Goreinov, S., Oseledets, I., Savostyanov, D., Tyrtyshnikov, E., Zamarashkin, N., How to find a good submatrix. Matrix Methods: Theory, Algorithms, Applications, 2010, Word Scientific, 247–256.
-
(2010)
Matrix Methods: Theory, Algorithms, Applications
, pp. 247-256
-
-
Goreinov, S.1
Oseledets, I.2
Savostyanov, D.3
Tyrtyshnikov, E.4
Zamarashkin, N.5
-
36
-
-
0031648312
-
A novel scheme for accurate MD simulations of large systems
-
Cambridge Univ Press
-
De Vita, A., Car, R., A novel scheme for accurate MD simulations of large systems. MRS Proceedings, vol. 491, 1997, Cambridge Univ Press, 473.
-
(1997)
MRS Proceedings
, vol.491
, pp. 473
-
-
De Vita, A.1
Car, R.2
-
37
-
-
19744381314
-
Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation
-
Csányi, G., Albaret, T., Payne, M., De Vita, A., Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett., 93(17), 2004, 175503.
-
(2004)
Phys. Rev. Lett.
, vol.93
, Issue.17
, pp. 175503
-
-
Csányi, G.1
Albaret, T.2
Payne, M.3
De Vita, A.4
-
38
-
-
0000905617
-
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
-
Sherman, J., Morrison, W.J., Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21:1 (1950), 124–127.
-
(1950)
Ann. Math. Stat.
, vol.21
, Issue.1
, pp. 124-127
-
-
Sherman, J.1
Morrison, W.J.2
-
39
-
-
12844286241
-
Ab initio molecular dynamics for liquid metals
-
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47(1), 1993, 558.
-
(1993)
Phys. Rev. B
, vol.47
, Issue.1
, pp. 558
-
-
Kresse, G.1
Hafner, J.2
-
40
-
-
0030190741
-
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
-
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6:1 (1996), 15–50.
-
(1996)
Comput. Mater. Sci.
, vol.6
, Issue.1
, pp. 15-50
-
-
Kresse, G.1
Furthmüller, J.2
-
41
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 1996, 11169.
-
(1996)
Phys. Rev. B
, vol.54
, Issue.16
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
42
-
-
25744460922
-
Projector augmented-wave method
-
Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B, 50(24), 1994, 17953, 10.1103/PhysRevB.50.17953.
-
(1994)
Phys. Rev. B
, vol.50
, Issue.24
, pp. 17953
-
-
Blöchl, P.E.1
-
43
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 1996, 3865, 10.1103/PhysRevLett.77.3865.
-
(1996)
Phys. Rev. Lett.
, vol.77
, Issue.18
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
44
-
-
0001208056
-
Parallel replica method for dynamics of infrequent events
-
Voter, A.F., Parallel replica method for dynamics of infrequent events. Phys. Rev. B, 57(22), 1998, R13985.
-
(1998)
Phys. Rev. B
, vol.57
, Issue.22
, pp. R13985
-
-
Voter, A.F.1
-
45
-
-
0029254909
-
Reversible work transition state theory: application to dissociative adsorption of hydrogen
-
Mills, G., Jónsson, H., Schenter, G.K., Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surface Sci. 324:2–3 (1995), 305–337.
-
(1995)
Surface Sci.
, vol.324
, Issue.2-3
, pp. 305-337
-
-
Mills, G.1
Jónsson, H.2
Schenter, G.K.3
-
46
-
-
0032591728
-
Accelerating atomistic simulations of defect dynamics: hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics
-
Cambridge Univ Press
-
Voter, A.F., Sørensen, M.R., Accelerating atomistic simulations of defect dynamics: hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics. MRS Proceedings, vol. 538, 1998, Cambridge Univ Press, 427.
-
(1998)
MRS Proceedings
, vol.538
, pp. 427
-
-
Voter, A.F.1
Sørensen, M.R.2
|