메뉴 건너뛰기




Volumn 140, Issue , 2017, Pages 171-180

Active learning of linearly parametrized interatomic potentials

Author keywords

Active learning; Atomistic simulation; Interatomic potential; Learning on the fly; Machine learning; Moment tensor potentials

Indexed keywords

LEARNING SYSTEMS; MOLECULAR DYNAMICS; SOFTWARE TESTING;

EID: 85028916984     PISSN: 09270256     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.commatsci.2017.08.031     Document Type: Article
Times cited : (591)

References (46)
  • 2
    • 22944446425 scopus 로고    scopus 로고
    • Introducing ONETEP: linear-scaling density functional simulations on parallel computers
    • Skylaris, C.-K., Haynes, P.D., Mostofi, A.A., Payne, M.C., Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys., 122(8), 2005, 084119.
    • (2005) J. Chem. Phys. , vol.122 , Issue.8 , pp. 084119
    • Skylaris, C.-K.1    Haynes, P.D.2    Mostofi, A.A.3    Payne, M.C.4
  • 3
    • 77957587959 scopus 로고    scopus 로고
    • Calculations for millions of atoms with density functional theory: linear scaling shows its potential
    • Bowler, D.R., Miyazaki, T., Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J. Phys.: Condensed Matter, 22(7), 2010, 074207.
    • (2010) J. Phys.: Condensed Matter , vol.22 , Issue.7 , pp. 074207
    • Bowler, D.R.1    Miyazaki, T.2
  • 5
    • 84939219377 scopus 로고    scopus 로고
    • Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials
    • Artrith, N., Kolpak, A.M., Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput. Mater. Sci. 110 (2015), 20–28.
    • (2015) Comput. Mater. Sci. , vol.110 , pp. 20-28
    • Artrith, N.1    Kolpak, A.M.2
  • 6
    • 84883157867 scopus 로고    scopus 로고
    • Machine-learning approach for one-and two-body corrections to density functional theory: applications to molecular and condensed water
    • Bartók, A.P., Gillan, M.J., Manby, F.R., Csányi, G., Machine-learning approach for one-and two-body corrections to density functional theory: applications to molecular and condensed water. Phys. Rev. B, 88(5), 2013, 054104.
    • (2013) Phys. Rev. B , vol.88 , Issue.5 , pp. 054104
    • Bartók, A.P.1    Gillan, M.J.2    Manby, F.R.3    Csányi, G.4
  • 7
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons
    • Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G., Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104, 2010, 136403, 10.1103/PhysRevLett.104.136403.
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 8
    • 80053512754 scopus 로고    scopus 로고
    • Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
    • Behler, J., Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13:40 (2011), 17930–17955.
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , Issue.40 , pp. 17930-17955
    • Behler, J.1
  • 9
    • 84899441459 scopus 로고    scopus 로고
    • Representing potential energy surfaces by high-dimensional neural network potentials
    • Behler, J., Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys.: Condensed Matter, 26(18), 2014, 183001.
    • (2014) J. Phys.: Condensed Matter , vol.26 , Issue.18 , pp. 183001
    • Behler, J.1
  • 10
    • 34047127421 scopus 로고    scopus 로고
    • Generalized neural-network representation of high-dimensional potential-energy surfaces
    • Behler, J., Parrinello, M., Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14), 2007, 146401.
    • (2007) Phys. Rev. Lett. , vol.98 , Issue.14 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 12
    • 84984605036 scopus 로고    scopus 로고
    • Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
    • Dolgirev, P.E., Kruglov, I.A., Oganov, A.R., Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv., 6(8), 2016, 085318.
    • (2016) AIP Adv. , vol.6 , Issue.8 , pp. 085318
    • Dolgirev, P.E.1    Kruglov, I.A.2    Oganov, A.R.3
  • 13
    • 84929346813 scopus 로고    scopus 로고
    • High-dimensional neural network potentials for organic reactions and an improved training algorithm
    • Gastegger, M., Marquetand, P., High-dimensional neural network potentials for organic reactions and an improved training algorithm. J. Chem. Theory Comput. 11:5 (2015), 2187–2198.
    • (2015) J. Chem. Theory Comput. , vol.11 , Issue.5 , pp. 2187-2198
    • Gastegger, M.1    Marquetand, P.2
  • 14
    • 84936774078 scopus 로고    scopus 로고
    • Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
    • Manzhos, S., Dawes, R., Carrington, T., Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces. Int. J. Quantum Chem. 115:16 (2015), 1012–1020.
    • (2015) Int. J. Quantum Chem. , vol.115 , Issue.16 , pp. 1012-1020
    • Manzhos, S.1    Dawes, R.2    Carrington, T.3
  • 15
    • 84925707827 scopus 로고    scopus 로고
    • Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials
    • Natarajan, S.K., Morawietz, T., Behler, J., Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials. Phys. Chem. Chem. Phys. 17:13 (2015), 8356–8371.
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , Issue.13 , pp. 8356-8371
    • Natarajan, S.K.1    Morawietz, T.2    Behler, J.3
  • 16
    • 84989347241 scopus 로고    scopus 로고
    • Moment tensor potentials
    • Shapeev, A.V., Moment tensor potentials. Multiscale Model. Simul. 14:3 (2016), 1153–1173.
    • (2016) Multiscale Model. Simul. , vol.14 , Issue.3 , pp. 1153-1173
    • Shapeev, A.V.1
  • 17
    • 84907478718 scopus 로고    scopus 로고
    • Accuracy and transferability of Gaussian approximation potential models for tungsten
    • Szlachta, W.J., Bartók, A.P., Csányi, G., Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys. Rev. B, 90(10), 2014, 104108.
    • (2014) Phys. Rev. B , vol.90 , Issue.10 , pp. 104108
    • Szlachta, W.J.1    Bartók, A.P.2    Csányi, G.3
  • 18
    • 84921665310 scopus 로고    scopus 로고
    • Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
    • Thompson, A., Swiler, L., Trott, C., Foiles, S., Tucker, G., Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285 (2015), 316–330, 10.1016/j.jcp.2014.12.018.
    • (2015) J. Comput. Phys. , vol.285 , pp. 316-330
    • Thompson, A.1    Swiler, L.2    Trott, C.3    Foiles, S.4    Tucker, G.5
  • 19
    • 84936846648 scopus 로고    scopus 로고
    • Crystal structure representations for machine learning models of formation energies
    • Faber, F., Lindmaa, A., von Lilienfeld, O.A., Armiento, R., Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115:16 (2015), 1094–1101.
    • (2015) Int. J. Quantum Chem. , vol.115 , Issue.16 , pp. 1094-1101
    • Faber, F.1    Lindmaa, A.2    von Lilienfeld, O.A.3    Armiento, R.4
  • 20
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • Rupp, M., Tkatchenko, A., Müller, K.-R., Von Lilienfeld, O.A., Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108(5), 2012, 058301.
    • (2012) Phys. Rev. Lett. , vol.108 , Issue.5 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Von Lilienfeld, O.A.4
  • 22
    • 85028924625 scopus 로고    scopus 로고
    • Machine learning in materials science: recent progress and emerging applications, Rev. Comput. Chem.
    • T. Mueller, A.G. Kusne, R. Ramprasad, Machine learning in materials science: recent progress and emerging applications, Rev. Comput. Chem.
    • Mueller, T.1    Kusne, A.G.2    Ramprasad, R.3
  • 23
    • 84878571921 scopus 로고    scopus 로고
    • On representing chemical environments
    • Bartók, A.P., Kondor, R., Csányi, G., On representing chemical environments. Phys. Rev. B, 87(18), 2013, 184115.
    • (2013) Phys. Rev. B , vol.87 , Issue.18 , pp. 184115
    • Bartók, A.P.1    Kondor, R.2    Csányi, G.3
  • 24
    • 79953856961 scopus 로고    scopus 로고
    • Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    • Behler, J., Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 134(7), 2011, 074106.
    • (2011) J. Chem. Phys. , vol.134 , Issue.7 , pp. 074106
    • Behler, J.1
  • 25
    • 85016436037 scopus 로고    scopus 로고
    • Ani-1: an extensible neural network potential with DFT accuracy at force field computational cost
    • Smith, J.S., Isayev, O., Roitberg, A.E., Ani-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 21:1 (2017), 124–127, 10.1039/C6SC05720A.
    • (2017) Chem. Sci. , vol.21 , Issue.1 , pp. 124-127
    • Smith, J.S.1    Isayev, O.2    Roitberg, A.E.3
  • 26
    • 84952845527 scopus 로고    scopus 로고
    • An implementation of artificial neural-network potentials for atomistic materials simulations: performance for tio 2
    • Artrith, N., Urban, A., An implementation of artificial neural-network potentials for atomistic materials simulations: performance for tio 2. Comput. Mater. Sci. 114 (2016), 135–150.
    • (2016) Comput. Mater. Sci. , vol.114 , pp. 135-150
    • Artrith, N.1    Urban, A.2
  • 27
    • 85014824497 scopus 로고    scopus 로고
    • Machine learning based interatomic potential for amorphous carbon
    • URL
    • Deringer, V.L., Csányi, G., Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B, 95, 2017, 094203, 10.1103/PhysRevB.95.094203 URL https://link.aps.org/doi/10.1103/PhysRevB.95.094203.
    • (2017) Phys. Rev. B , vol.95 , pp. 094203
    • Deringer, V.L.1    Csányi, G.2
  • 28
    • 84943744240 scopus 로고    scopus 로고
    • Learning scheme to predict atomic forces and accelerate materials simulations
    • Botu, V., Ramprasad, R., Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B, 92(9), 2015, 094306.
    • (2015) Phys. Rev. B , vol.92 , Issue.9 , pp. 094306
    • Botu, V.1    Ramprasad, R.2
  • 29
    • 84924365603 scopus 로고    scopus 로고
    • Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
    • Li, Z., Kermode, J.R., De Vita, A., Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett., 114, 2015, 096405, 10.1103/PhysRevLett.114.096405.
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 096405
    • Li, Z.1    Kermode, J.R.2    De Vita, A.3
  • 30
    • 85023752533 scopus 로고    scopus 로고
    • Accurate interatomic force fields via machine learning with covariant kernels
    • URL
    • Glielmo, A., Sollich, P., De Vita, A., Accurate interatomic force fields via machine learning with covariant kernels. Phys. Rev. B, 95, 2017, 214302, 10.1103/PhysRevB.95.214302 URL https://link.aps.org/doi/10.1103/PhysRevB.95.214302.
    • (2017) Phys. Rev. B , vol.95 , pp. 214302
    • Glielmo, A.1    Sollich, P.2    De Vita, A.3
  • 31
    • 85028937723 scopus 로고    scopus 로고
    • Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison
    • B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison, 2009.
    • (2009)
    • Settles, B.1
  • 32
    • 19644400912 scopus 로고    scopus 로고
    • Bayesian ensemble approach to error estimation of interatomic potentials
    • Frederiksen, S.L., Jacobsen, K.W., Brown, K.S., Sethna, J.P., Bayesian ensemble approach to error estimation of interatomic potentials. Phys. Rev. Lett., 93(16), 2004, 165501.
    • (2004) Phys. Rev. Lett. , vol.93 , Issue.16 , pp. 165501
    • Frederiksen, S.L.1    Jacobsen, K.W.2    Brown, K.S.3    Sethna, J.P.4
  • 33
    • 84936800621 scopus 로고    scopus 로고
    • Adaptive machine learning framework to accelerate ab initio molecular dynamics
    • Botu, V., Ramprasad, R., Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115:16 (2015), 1074–1083.
    • (2015) Int. J. Quantum Chem. , vol.115 , Issue.16 , pp. 1074-1083
    • Botu, V.1    Ramprasad, R.2
  • 34
    • 85009268750 scopus 로고    scopus 로고
    • A study of adatom ripening on an al (111) surface with machine learning force fields
    • Botu, V., Chapman, J., Ramprasad, R., A study of adatom ripening on an al (111) surface with machine learning force fields. Comput. Mater. Sci. 129 (2017), 332–335.
    • (2017) Comput. Mater. Sci. , vol.129 , pp. 332-335
    • Botu, V.1    Chapman, J.2    Ramprasad, R.3
  • 36
    • 0031648312 scopus 로고    scopus 로고
    • A novel scheme for accurate MD simulations of large systems
    • Cambridge Univ Press
    • De Vita, A., Car, R., A novel scheme for accurate MD simulations of large systems. MRS Proceedings, vol. 491, 1997, Cambridge Univ Press, 473.
    • (1997) MRS Proceedings , vol.491 , pp. 473
    • De Vita, A.1    Car, R.2
  • 37
    • 19744381314 scopus 로고    scopus 로고
    • Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation
    • Csányi, G., Albaret, T., Payne, M., De Vita, A., Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett., 93(17), 2004, 175503.
    • (2004) Phys. Rev. Lett. , vol.93 , Issue.17 , pp. 175503
    • Csányi, G.1    Albaret, T.2    Payne, M.3    De Vita, A.4
  • 38
    • 0000905617 scopus 로고
    • Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
    • Sherman, J., Morrison, W.J., Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21:1 (1950), 124–127.
    • (1950) Ann. Math. Stat. , vol.21 , Issue.1 , pp. 124-127
    • Sherman, J.1    Morrison, W.J.2
  • 39
    • 12844286241 scopus 로고
    • Ab initio molecular dynamics for liquid metals
    • Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47(1), 1993, 558.
    • (1993) Phys. Rev. B , vol.47 , Issue.1 , pp. 558
    • Kresse, G.1    Hafner, J.2
  • 40
    • 0030190741 scopus 로고    scopus 로고
    • Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    • Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6:1 (1996), 15–50.
    • (1996) Comput. Mater. Sci. , vol.6 , Issue.1 , pp. 15-50
    • Kresse, G.1    Furthmüller, J.2
  • 41
    • 2442537377 scopus 로고    scopus 로고
    • Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    • Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 1996, 11169.
    • (1996) Phys. Rev. B , vol.54 , Issue.16 , pp. 11169
    • Kresse, G.1    Furthmüller, J.2
  • 42
    • 25744460922 scopus 로고
    • Projector augmented-wave method
    • Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B, 50(24), 1994, 17953, 10.1103/PhysRevB.50.17953.
    • (1994) Phys. Rev. B , vol.50 , Issue.24 , pp. 17953
    • Blöchl, P.E.1
  • 43
    • 4243943295 scopus 로고    scopus 로고
    • Generalized gradient approximation made simple
    • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 1996, 3865, 10.1103/PhysRevLett.77.3865.
    • (1996) Phys. Rev. Lett. , vol.77 , Issue.18 , pp. 3865
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 44
    • 0001208056 scopus 로고    scopus 로고
    • Parallel replica method for dynamics of infrequent events
    • Voter, A.F., Parallel replica method for dynamics of infrequent events. Phys. Rev. B, 57(22), 1998, R13985.
    • (1998) Phys. Rev. B , vol.57 , Issue.22 , pp. R13985
    • Voter, A.F.1
  • 45
    • 0029254909 scopus 로고
    • Reversible work transition state theory: application to dissociative adsorption of hydrogen
    • Mills, G., Jónsson, H., Schenter, G.K., Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surface Sci. 324:2–3 (1995), 305–337.
    • (1995) Surface Sci. , vol.324 , Issue.2-3 , pp. 305-337
    • Mills, G.1    Jónsson, H.2    Schenter, G.K.3
  • 46
    • 0032591728 scopus 로고    scopus 로고
    • Accelerating atomistic simulations of defect dynamics: hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics
    • Cambridge Univ Press
    • Voter, A.F., Sørensen, M.R., Accelerating atomistic simulations of defect dynamics: hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics. MRS Proceedings, vol. 538, 1998, Cambridge Univ Press, 427.
    • (1998) MRS Proceedings , vol.538 , pp. 427
    • Voter, A.F.1    Sørensen, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.