메뉴 건너뛰기




Volumn 5, Issue , 2017, Pages 16576-16583

Cerebral Micro-Bleed Detection Based on the Convolution Neural Network with Rank Based Average Pooling

Author keywords

cerebral micro bleed; Convolutional neural network; network structure; rank based average pooling

Indexed keywords

DISEASES; ELECTRONIC MAIL; FLOW VISUALIZATION; MAGNETIC RESONANCE IMAGING; NEURAL NETWORKS;

EID: 85028508754     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2017.2736558     Document Type: Article
Times cited : (85)

References (21)
  • 1
    • 84955259585 scopus 로고    scopus 로고
    • Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging
    • Dec.
    • A. Fazlollahi, et al., "Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging, " Comput. Med. Imag. Graph., vol. 46, pp. 269-276, Dec. 2015.
    • (2015) Comput. Med. Imag. Graph. , vol.46 , pp. 269-276
    • Fazlollahi, A.1
  • 2
    • 84874834481 scopus 로고    scopus 로고
    • Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images
    • Dec.
    • W. Bian, C. P. Hess, S. M. Chang, S. J. Nelson, J. M. Lupo, "Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images, " NeuroImage, Clin., vol. 2, pp. 282-290, Dec. 2013.
    • (2013) NeuroImage, Clin. , vol.2 , pp. 282-290
    • Bian, W.1    Hess, C.P.2    Chang, S.M.3    Nelson, S.J.4    Lupo, J.M.5
  • 3
    • 84978805751 scopus 로고    scopus 로고
    • Automated detection of cerebral microbleeds in patients with traumatic brain injury
    • Feb.
    • T. L. A. van den Heuvel, et al., "Automated detection of cerebral microbleeds in patients with traumatic brain injury, " NeuroImage, Clin., vol. 12, pp. 241-251, Feb. 2016.
    • (2016) NeuroImage, Clin. , vol.12 , pp. 241-251
    • Heuvel Den Van, A.T.L.1
  • 4
    • 79959235240 scopus 로고    scopus 로고
    • Semiautomated detection of cerebral microbleeds in magnetic resonance images
    • Jul.
    • S. R. S. Barnes, "Semiautomated detection of cerebral microbleeds in magnetic resonance images, " Magn. Reson. Imag., vol. 29, no. 6, pp. 844-852, Jul. 2011.
    • (2011) Magn. Reson. Imag. , vol.29 , Issue.6 , pp. 844-852
    • Barnes, S.R.S.1
  • 5
    • 84855443719 scopus 로고    scopus 로고
    • Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform
    • H. J. Kuijf, et al., "Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform, " NeuroImage, vol. 59, no. 3, pp. 2266-2273, 2012.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2266-2273
    • Kuijf, H.J.1
  • 6
    • 84867711955 scopus 로고    scopus 로고
    • Cerebral microbleed detection and mapping: Principles, methodological aspects and rationale in vascular dementia
    • A. Charidimou, H. R. Jäger, D. J. Werring, "Cerebral microbleed detection and mapping: Principles, methodological aspects and rationale in vascular dementia, " Experim. Gerontol., vol. 47, no. 11, pp. 843-852, 2012.
    • (2012) Experim. Gerontol. , vol.47 , Issue.11 , pp. 843-852
    • Charidimou, A.1    Jäger, H.R.2    Werring, D.J.3
  • 7
    • 85009726009 scopus 로고    scopus 로고
    • Voxelwise detection of cerebral microbleed in 398 CADASIL patients by leaky rectified linear unit and early stopping
    • Jan. [Online]. Available:
    • Y. D. Zhang, et al., "Voxelwise detection of cerebral microbleed in 398 CADASIL patients by leaky rectified linear unit and early stopping, " Multimedia Tools Appl., pp. 1-21, Jan. 2017. [Online]. Available: Https://link.springer.com/article/10.1007/s11042-017-4383-9
    • (2017) Multimedia Tools Appl. , pp. 1-21
    • Zhang, Y.D.1
  • 8
    • 84991648627 scopus 로고    scopus 로고
    • Visual saliency detection based on multiscale deep CNN features
    • Nov.
    • G. Li and Y. Yu, "Visual saliency detection based on multiscale deep CNN features, " IEEE Trans. Image Process., vol. 25, no. 11, pp. 5012-5024, Nov. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.11 , pp. 5012-5024
    • Li, G.1    Yu, Y.2
  • 9
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 10
    • 85018649260 scopus 로고    scopus 로고
    • Hough-CNN: Deep learning for segmentation of deep 407 brain regions in MRI and ultrasound
    • [Online]. Available:
    • F. Milletari, et al., "Hough-CNN: Deep learning for segmentation of deep 407 brain regions in MRI and ultrasound, " Comput. Vis. Image Understand., 2017. [Online]. Available: Https://doi.org/10.1016/j.cviu.2017.04.002
    • (2017) Comput. Vis. Image Understand.
    • Milletari, F.1
  • 11
    • 85017137238 scopus 로고    scopus 로고
    • Three-stream CNNs for action recognition
    • Jun.
    • L. Wang, "Three-stream CNNs for action recognition, " Pattern Recognit. Lett., vol. 92, pp. 33-40, Jun. 2017.
    • (2017) Pattern Recognit. Lett. , vol.92 , pp. 33-40
    • Wang, L.1
  • 13
    • 0034700473 scopus 로고    scopus 로고
    • Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
    • Dec.
    • R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung, "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, " Nature, vol. 408, p. 1012, Dec. 2000.
    • (2000) Nature , vol.408 , pp. 1012
    • Hahnloser, R.H.R.1    Sarpeshkar, R.2    Mahowald, M.A.3    Douglas, R.J.4    Seung, H.S.5
  • 17
    • 85015928262 scopus 로고    scopus 로고
    • Rank pooling for action recognition
    • B. Fernando, et al., "Rank pooling for action recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 773-787, 2017.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.4 , pp. 773-787
    • Fernando, B.1
  • 18
    • 84982149359 scopus 로고    scopus 로고
    • Rank-based pooling for deep convolutional neural networks
    • Nov.
    • Z. Shi, Y. Wu, Y. Ye, "Rank-based pooling for deep convolutional neural networks, " Neural Netw., vol. 83, pp. 21-31, Nov. 2016.
    • (2016) Neural Netw. , vol.83 , pp. 21-31
    • Shi, Z.1    Wu, Y.2    Ye, Y.3
  • 20
    • 85015085768 scopus 로고    scopus 로고
    • Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed
    • H. Chen, "Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed, " Multimedia Tools Appl., vol. 5, pp. 1-18, 2017, doi: 10.1007/s11042-017-4554-8.
    • (2017) Multimedia Tools Appl. , vol.5 , pp. 1-18
    • Chen, H.1
  • 21
    • 85029612597 scopus 로고    scopus 로고
    • Cerebral microbleed detection by wavelet entropy and naive Bayes classifier
    • B. Gagnon, "Cerebral microbleed detection by wavelet entropy and naive Bayes classifier, " in Proc. 2nd Int. Conf. Biomed. Biol. Eng. (BBE), 2017, pp. 321-325.
    • (2017) Proc. 2nd Int. Conf. Biomed. Biol. Eng. (BBE) , pp. 321-325
    • Gagnon, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.