메뉴 건너뛰기




Volumn , Issue , 2013, Pages 591-596

Multi-focus image fusion based on sparse representation with adaptive sparse domain selection

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM STABILITY; GENERAL OPTIMIZATIONS; GRADIENT INFORMATIONS; IMAGE PROCESSING APPLICATIONS; MULTIFOCUS IMAGE FUSION; OBJECTIVE EVALUATION CRITERIA; REDUNDANT DICTIONARIES; SPARSE REPRESENTATION;

EID: 84891313062     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIG.2013.123     Document Type: Conference Paper
Times cited : (17)

References (15)
  • 1
    • 0242270987 scopus 로고    scopus 로고
    • A general framework for multiresolution imagefusion: From pixels to regions
    • G. Piella. A general framework for multiresolution imagefusion: from pixels to regions. Information Fusion, 4(4): 259-280, 2003. 1
    • (2003) Information Fusion , vol.4 , Issue.4 , pp. 259-280
    • Piella, G.1
  • 2
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse andredundant representations over learned dictionaries
    • M. Elad and M. Aharon. Image denoising via sparse andredundant representations over learned dictionaries. IEEETrans. on Image Processing, 15(2):3736-3745, 2006. 1, 3, 5
    • (2006) IEEETrans. on Image Processing , vol.15 , Issue.2 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 3
    • 78049312324 scopus 로고    scopus 로고
    • Imagesuper-resolution via sparse representation
    • J. Yang, J. Wright, T. Huang and Y. Ma. Imagesuper-resolution via sparse representation. IEEE Trans. onImage Processing, 19(11): 2861-2873. 2010. 1
    • (2010) IEEE Trans. OnImage Processing , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 4
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurringand super-resolution by adaptive sparse domain selection andadaptive regularization
    • W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurringand super-resolution by adaptive sparse domain selection andadaptive regularization. IEEE Trans. on Image Processing, 20(7):1838-1857, 2011. 1, 2
    • (2011) IEEE Trans. on Image Processing , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.1    Zhang, L.2    Shi, G.3    Wu, X.4
  • 5
    • 77949422825 scopus 로고    scopus 로고
    • Multifocus image fusion and restorationwith sparse representation
    • B. Yang and S. Li. Multifocus image fusion and restorationwith sparse representation. IEEE Trans. on Instrumentationand Measurement, 59 (4):884-892, 2010. 1, 2, 3, 4, 5, 6
    • (2010) IEEE Trans. on Instrumentationand Measurement , vol.59 , Issue.4 , pp. 884-892
    • Yang, B.1    Li, S.2
  • 6
    • 80053987231 scopus 로고    scopus 로고
    • Pixel-level image fusion withsimultaneous orthogonal matching pursuit
    • B. Yang and S. Li. Pixel-level image fusion withsimultaneous orthogonal matching pursuit. InformationFusion, 13(1):10-19, 2012. 1, 2
    • (2012) InformationFusion , vol.13 , Issue.1 , pp. 10-19
    • Yang, B.1    Li, S.2
  • 7
    • 80051765671 scopus 로고    scopus 로고
    • Image features extractionand fusion based on joint sparse representation
    • N. Yu, T. Qiu, F. Bi and A. Wang. Image features extractionand fusion based on joint sparse representation. IEEE Journalof Selected Topics in Signal Processing, 5(5):1074-1082, 2011. 1, 2
    • (2011) IEEE Journalof Selected Topics in Signal Processing , vol.5 , Issue.5 , pp. 1074-1082
    • Yu, N.1    Qiu, T.2    Bi, F.3    Wang, A.4
  • 9
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: Analgorithm for designing overcomplete dictionaries for sparserepresentation
    • M. Aharon, M. Elad and A. Bruckstein. K-SVD: analgorithm for designing overcomplete dictionaries for sparserepresentation. IEEE Transactions on Signal Processing, 54(11):4311-4322, 2006. 2
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 10
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariantkeypoints
    • D. G. Lowe. Distinctive image features from scale-invariantkeypoints. International Journal of Computer Vision,60(2):91-110, 2004. 3
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 11
    • 58149235372 scopus 로고    scopus 로고
    • Image fusion algorithmbased on spatial frequency-motivated plus coupled neuralnetwork in nonsubsampled contourlet transform domain
    • X. Qu, J. Yan, H Xiao and Z. Zhu. Image fusion algorithmbased on spatial frequency-motivated plus coupled neuralnetwork in nonsubsampled contourlet transform domain. Acta Automatica Sinica, 34(12):1508-1514, 2008. 4
    • (2008) Acta Automatica Sinica , vol.34 , Issue.12 , pp. 1508-1514
    • Qu, X.1    Yan, J.2    Xiao, H.3    Zhu, Z.4
  • 12
    • 84891342052 scopus 로고    scopus 로고
    • Investigations of Image Fusion. Electrical Engineering andComputer Science Department, Lehigh University
    • Investigations of Image Fusion. Electrical Engineering andComputer Science Department, Lehigh University. http://www. ece. lehigh. edu/SPCRL/IF/image-fusion. htm. 4
  • 14
    • 0033908184 scopus 로고    scopus 로고
    • Objective image fusionperformance measure
    • C. S. Xydeas and V. Petrovic. Objective image fusionperformance measure. Electronics Letters 36(4):308-309, 2000. 4
    • (2000) Electronics Letters , vol.36 , Issue.4 , pp. 308-309
    • Xydeas, C.S.1    Petrovic, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.