메뉴 건너뛰기




Volumn , Issue , 2000, Pages

Gaussian mixtures and their applications to signal processing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85027435700     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (47)

References (81)
  • 9
    • 0002582140 scopus 로고
    • Estimation and hypothesis testing in finite mixture models
    • M. Aitkin and D.B. Rubin, Estimation and hypothesis testing in finite mixture models, J. R. Stat. Soc. B, 47, 67-75, 1985.
    • (1985) J. R. Stat. Soc. B , vol.47 , pp. 67-75
    • Aitkin, M.1    Rubin, D.B.2
  • 10
    • 0022186518 scopus 로고
    • Likelihood estimation with normal mixture models
    • K.E. Basford and G.J. MacLachlan, Likelihood estimation with normal mixture models, Appl. Stat., 34, 282-289, 1985.
    • (1985) Appl. Stat. , vol.34 , pp. 282-289
    • Basford, K.E.1    Maclachlan, G.J.2
  • 11
    • 0012479284 scopus 로고
    • On a mixture of normal distributions
    • J. Behboodian, On a mixture of normal distributions, Biometrika, 57, 215-217, 1970.
    • (1970) Biometrika , vol.57 , pp. 215-217
    • Behboodian, J.1
  • 12
    • 0037847280 scopus 로고
    • A comparison of some methods for estimating mixed normal distributions
    • J.G. Fryer and C.A. Robertson, A comparison of some methods for estimating mixed normal distributions, Biometrika, 59, 639-648, 1972.
    • (1972) Biometrika , vol.59 , pp. 639-648
    • Fryer, J.G.1    Robertson, C.A.2
  • 13
    • 0031037819 scopus 로고    scopus 로고
    • Density estimation through convex combination of densities: Approximation and estimation bounds
    • A.S. Zeevi and R. Meir, Density estimation through convex combination of densities: Approximation and estimation bounds, Neural Networks, 10(1), 99-109, 1997.
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 99-109
    • Zeevi, A.S.1    Meir, R.2
  • 14
    • 0011473828 scopus 로고
    • On mixtures of distributions: A survey and some new results on ranking and selection
    • S.S. Gupta and W.T. Huang, On mixtures of distributions: A survey and some new results on ranking and selection, Sankhya Ser. B, 43, 245-290, 1981.
    • (1981) Sankhya Ser. B , vol.43 , pp. 245-290
    • Gupta, S.S.1    Huang, W.T.2
  • 15
    • 0000307443 scopus 로고
    • Estimation of finite mixtures of distributions from exponential family
    • V. Husselblad, Estimation of finite mixtures of distributions from exponential family, J. Am. Stat. Assoc., 64, 1459-1471, 1969.
    • (1969) J. Am. Stat. Assoc. , vol.64 , pp. 1459-1471
    • Husselblad, V.1
  • 16
    • 38049135335 scopus 로고    scopus 로고
    • Another interpretation of the EM algorithm for mixture distributions
    • R.J. Hathaway, Another interpretation of the EM algorithm for mixture distributions, Stat. Probability Lett., 4, 53-56.
    • Stat. Probability Lett. , vol.4 , pp. 53-56
    • Hathaway, R.J.1
  • 17
    • 0002063041 scopus 로고
    • Robust M-estimators of multivariate location and scatter
    • R.A. Maronna, Robust M-estimators of multivariate location and scatter, Ann. Stat., 4, 51-67, 1976.
    • (1976) Ann. Stat. , vol.4 , pp. 51-67
    • Maronna, R.A.1
  • 18
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R.A. Render and H.F. Walker, Mixture densities, maximum likelihood and the EM algorithm, SIAM Rev., 26(2), 195-293, 1984.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-293
    • Render, R.A.1    Walker, H.F.2
  • 19
    • 85199993440 scopus 로고    scopus 로고
    • Discriminant analysis by Gaussian mixtures
    • T. Hastie and R. Tibshirani, Discriminant analysis by Gaussian mixtures, J. R. Stat. Soc. B, 58(1), 155-176, January 1996.
    • (1996) J. R. Stat. Soc. B , vol.58 , Issue.1 , pp. 155-176
    • Hastie, T.1    Tibshirani, R.2
  • 20
    • 0000411615 scopus 로고
    • On the identifiability of finite mixtures
    • S.J. Yakowitz and J.D. Sprangins, On the identifiability of finite mixtures, Ann. Math. Stat., 39, 209-214, 1968.
    • (1968) Ann. Math. Stat. , vol.39 , pp. 209-214
    • Yakowitz, S.J.1    Sprangins, J.D.2
  • 21
    • 0014780964 scopus 로고
    • Unsupervised learning and the identification of finite mixtures
    • S.J. Yakowitz, Unsupervised learning and the identification of finite mixtures, IEEE Trans. Inf. Theory, IT-16, 258-263, 1970.
    • (1970) IEEE Trans. Inf. Theory , vol.IT-16 , pp. 258-263
    • Yakowitz, S.J.1
  • 22
    • 0000411615 scopus 로고
    • A consistent estimator for the identification of finite mixtures
    • S.J. Yakowitz, A consistent estimator for the identification of finite mixtures, Ann. Math. Stat., 40, 1728-1735, 1968.
    • (1968) Ann. Math. Stat. , vol.40 , pp. 1728-1735
    • Yakowitz, S.J.1
  • 23
    • 0026151470 scopus 로고
    • A neural network approach to statistical pattern classification by semiparametric estimation of probability density function
    • H.G.C. Traven, A neural network approach to statistical pattern classification by semiparametric estimation of probability density function, IEEE Trans. Neural Networks, 2(3), 366-377, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.3 , pp. 366-377
    • Traven, H.G.C.1
  • 25
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D.F. Specht, Probabilistic neural networks, Neural Networks, 3, 109-118, 1990.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 26
    • 0014779869 scopus 로고
    • Stochastic estimation of a mixture of normal density functions using an information criterion
    • T.Y. Young and G. Copaluppi, Stochastic estimation of a mixture of normal density functions using an information criterion, IEEE Trans. Inf. Theory, IT-16, 258-263, 1970.
    • (1970) IEEE Trans. Inf. Theory , vol.IT-16 , pp. 258-263
    • Young, T.Y.1    Copaluppi, G.2
  • 27
    • 0031106955 scopus 로고    scopus 로고
    • Statistical approach to segmentation of singlechannel cerebral MR images
    • J.C. Rajapakse, J.N. Gieldd, and J.L. Rapaport, Statistical approach to segmentation of singlechannel cerebral MR images, IEEE Trans. Med. Imaging, 16(2), 176-186, 1997.
    • (1997) IEEE Trans. Med. Imaging , vol.16 , Issue.2 , pp. 176-186
    • Rajapakse, J.C.1    Gieldd, J.N.2    Rapaport, J.L.3
  • 28
    • 0032034222 scopus 로고    scopus 로고
    • Robust parameter estimation of intensity distributions for brain magnetic resonance images
    • P. Schroeter, J.M. Vesin, T. Langenberger, and R. Meuli, Robust parameter estimation of intensity distributions for brain magnetic resonance images, IEEE Trans. Med. Imaging, 27(2), 172-186, 1998.
    • (1998) IEEE Trans. Med. Imaging , vol.27 , Issue.2 , pp. 172-186
    • Schroeter, P.1    Vesin, J.M.2    Langenberger, T.3    Meuli, R.4
  • 29
    • 0032028195 scopus 로고    scopus 로고
    • Segmentation of MR images with intensity inhomogeneities
    • J.C. Rajapakse and F. Kruggel, Segmentation of MR images with intensity inhomogeneities, Image Vision Comput., 16(3), 165-180, 1998.
    • (1998) Image Vision Comput. , vol.16 , Issue.3 , pp. 165-180
    • Rajapakse, J.C.1    Kruggel, F.2
  • 30
    • 0032122746 scopus 로고    scopus 로고
    • Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm
    • S.G. Sanjay and T.J. Hebert, Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm, IEEE Trans. Image Process., 7(7), 1024-1028, 1998.
    • (1998) IEEE Trans. Image Process. , vol.7 , Issue.7 , pp. 1024-1028
    • Sanjay, S.G.1    Hebert, T.J.2
  • 31
    • 0000607206 scopus 로고
    • Identifiability of finite mixtures
    • H. Teicher, Identifiability of finite mixtures, Ann. Stat., 34, 1265-1269, 1963.
    • (1963) Ann. Stat. , vol.34 , pp. 1265-1269
    • Teicher, H.1
  • 32
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J.R. Stat. Soc. B, 39, 1-38, 1977.
    • (1977) J.R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 33
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • T.K. Moon, The expectation-maximization algorithm, IEEE Signal Process. Mag., 16(2), 47-60, 1997.
    • (1997) IEEE Signal Process. Mag. , vol.16 , Issue.2 , pp. 47-60
    • Moon, T.K.1
  • 34
    • 21844494777 scopus 로고
    • Adaptive mixtures
    • C.E. Priebe, Adaptive mixtures, J. Am. Stat. Assoc., 89, 796-806, 1994.
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 796-806
    • Priebe, C.E.1
  • 35
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • J. Diebolt and C. Robert, Estimation of finite mixture distributions through Bayesian sampling, J. R. Stat. Soc. B, 56, 363-375, 1994.
    • (1994) J. R. Stat. Soc. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.2
  • 36
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • M. Escobar and M. West, Bayesian density estimation and inference using mixtures, J. Am. Stat. Assoc., 90, 577-588, 1995.
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 577-588
    • Escobar, M.1    West, M.2
  • 37
    • 0001431082 scopus 로고
    • Some recent research in the analysis of mixture distribution
    • D.M. Titterington, Some recent research in the analysis of mixture distribution, Statistics, 21, 619-640, 1990.
    • (1990) Statistics , vol.21 , pp. 619-640
    • Titterington, D.M.1
  • 38
    • 84947562230 scopus 로고
    • Initializing the EM algorithm for use in Gaussian mixture modelling
    • E.S. Gelsema and L.N. Kanal, Eds., Elsevier Science, New York
    • P. McKenzie and M. Alder, Initializing the EM algorithm for use in Gaussian mixture modelling, in Pattern Recognition in Practice IV, E.S. Gelsema and L.N. Kanal, Eds., Elsevier Science, New York, pp 91-105, 1994.
    • (1994) Pattern Recognition in Practice IV , pp. 91-105
    • McKenzie, P.1    Alder, M.2
  • 42
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • G. Celeux and J. Diebolt, The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computat. Stat. Q., 2, 35-52, 1986.
    • (1986) Computat. Stat. Q. , vol.2 , pp. 35-52
    • Celeux, G.1    Diebolt, J.2
  • 43
    • 0002757023 scopus 로고    scopus 로고
    • Probability models and hypotheses testing in partitioning cluster analysis
    • P. Arabie, L.J. Hubert, and G. DeSoete, Eds, World Scientific Publishers, Singapore
    • H.H. Bock, Probability models and hypotheses testing in partitioning cluster analysis, in Clustering and Classification, P. Arabie, L.J. Hubert, and G. DeSoete, Eds., pp 377-453, World Scientific Publishers, Singapore, 1996.
    • (1996) Clustering and Classification , pp. 377-453
    • Bock, H.H.1
  • 45
    • 0026359274 scopus 로고
    • Adaptive mixtures: Recursive nonparametric pattern recognition
    • C.E. Priebe and D.M. Marchette, Adaptive mixtures: Recursive nonparametric pattern recognition, Pattern Recognition, 24, 1197-1209, 1991.
    • (1991) Pattern Recognition , vol.24 , pp. 1197-1209
    • Priebe, C.E.1    Marchette, D.M.2
  • 46
    • 50549218467 scopus 로고
    • Nonsupervised adaptive signal detection and pattern recognition
    • D.B. Cooper and P.W. Cooper, Nonsupervised adaptive signal detection and pattern recognition, Inf. Control, 7, 416-444, 1964.
    • (1964) Inf. Control , vol.7 , pp. 416-444
    • Cooper, D.B.1    Cooper, P.W.2
  • 48
    • 0014705560 scopus 로고
    • Liner and non-linear filtering
    • R.S. Bucy, Liner and non-linear filtering, Proc. IEEE, 58, 854-864, 1970.
    • (1970) Proc. IEEE , vol.58 , pp. 854-864
    • Bucy, R.S.1
  • 49
    • 0016991136 scopus 로고
    • Partitioning: A unifying framework for adaptive systems I: Estimation
    • D.G. Lainiotis, Partitioning: A unifying framework for adaptive systems I: Estimation, Proc. IEEE, 64, 1126-1143, 1976.
    • (1976) Proc. IEEE , vol.64 , pp. 1126-1143
    • Lainiotis, D.G.1
  • 50
    • 0001231547 scopus 로고
    • Digital synthesis of non-linear filters
    • R.S. Bucy and K.D. Senne, Digital synthesis of non-linear filters, Automatica, 7, 287-298, 1971.
    • (1971) Automatica , vol.7 , pp. 287-298
    • Bucy, R.S.1    Senne, K.D.2
  • 51
    • 0000007140 scopus 로고
    • Recursive Bayesian estimation using Gaussian sums
    • H.W. Sorenson and D.L. Alspach, Recursive Bayesian estimation using Gaussian sums, Automatica, 7, 465-479, 1971.
    • (1971) Automatica , vol.7 , pp. 465-479
    • Sorenson, H.W.1    Alspach, D.L.2
  • 52
    • 0002530957 scopus 로고
    • Nonlinear filtering by approximation of a-posteriori density
    • H.W. Sorenson and A.R. Stubberud, Nonlinear filtering by approximation of a-posteriori density, Int. J. Control, 18, 33-51, 1968.
    • (1968) Int. J. Control , vol.18 , pp. 33-51
    • Sorenson, H.W.1    Stubberud, A.R.2
  • 53
    • 0020847313 scopus 로고
    • Gaussian sum approximation for non-linear fixed point prediction
    • T. Numera and A.R. Stubberud, Gaussian sum approximation for non-linear fixed point prediction, Int. J. Control, 38, 1047-1053, 1983.
    • (1983) Int. J. Control , vol.38 , pp. 1047-1053
    • Numera, T.1    Stubberud, A.R.2
  • 54
    • 0016106103 scopus 로고
    • Gaussian sum approximations in nonlinear filtering and control
    • D.L. Alspach, Gaussian sum approximations in nonlinear filtering and control, Inf. Sci., 7, 271-290, 1974.
    • (1974) Inf. Sci. , vol.7 , pp. 271-290
    • Alspach, D.L.1
  • 55
    • 0021138576 scopus 로고
    • Linear and non-linear filters for linear, but non-Gaussian processes
    • T.S. Rao and M. Yar, Linear and non-linear filters for linear, but non-Gaussian processes, Int. J. Control, 39, 235-246, 1983.
    • (1983) Int. J. Control , vol.39 , pp. 235-246
    • Rao, T.S.1    Yar, M.2
  • 56
    • 0027626055 scopus 로고
    • Tracking with debiased consistent converted measurements versus EKF
    • D. Lerro and Y. Bar-Shalom, Tracking with debiased consistent converted measurements versus EKF, IEEE Trans Aerosp. Electron. Syst., 29(3), 1015-1022, 1993.
    • (1993) IEEE Trans Aerosp. Electron. Syst. , vol.29 , Issue.3 , pp. 1015-1022
    • Lerro, D.1    Bar-Shalom, Y.2
  • 57
    • 0033177823 scopus 로고    scopus 로고
    • An adaptive Gaussian sum algorithm for target tracking
    • W.-I. Tam, K.N. Plataniotis, and D. Hatzinakos, An adaptive Gaussian sum algorithm for target tracking, Signal Process., 77(1), 85-104, August 1999.
    • (1999) Signal Process. , vol.77 , Issue.1 , pp. 85-104
    • Tam, W.-I.1    Plataniotis, K.N.2    Hatzinakos, D.3
  • 58
    • 0025464013 scopus 로고
    • Nonlinear techniques for interference suppression in spread-spectrum systems
    • R. Vijayan and H.V. Poor, Nonlinear techniques for interference suppression in spread-spectrum systems, IEEE Trans. Commun., COM-38, 1060-1065, 1990.
    • (1990) IEEE Trans. Commun , vol.COM-38 , pp. 1060-1065
    • Vijayan, R.1    Poor, H.V.2
  • 59
    • 0021371939 scopus 로고
    • Threshold detection in narrowband non-Gaussian noise
    • K.S. Vastola, Threshold detection in narrowband non-Gaussian noise, IEEE Trans. Commun., COM-32, 134-139, 1984.
    • (1984) IEEE Trans. Commun , vol.COM-32 , pp. 134-139
    • Vastola, K.S.1
  • 60
    • 0026771865 scopus 로고
    • Narrowband interference suppression in impulsive environment
    • L.M. Garth and H.V. Poor, Narrowband interference suppression in impulsive environment, IEEE Trans. Aerosp. Electron. Syst., AES-28, 15-33, 1992.
    • (1992) IEEE Trans. Aerosp. Electron. Syst , vol.AES-28 , pp. 15-33
    • Garth, L.M.1    Poor, H.V.2
  • 61
    • 0016473357 scopus 로고
    • Approximate non-Gaussian filtering with linear state and observation relations
    • C.J. Masreliez, Approximate non-Gaussian filtering with linear state and observation relations, IEEE Trans. Autom. Control, AC-20, 107-110, 1975.
    • (1975) IEEE Trans. Autom. Control , vol.AC-20 , pp. 107-110
    • Masreliez, C.J.1
  • 62
    • 0030170506 scopus 로고    scopus 로고
    • Recursive filtering with non-Gaussian noises
    • W.R. Wu and A. Kundu, Recursive filtering with non-Gaussian noises, IEEE Trans. Signal Process., 44(4), 1454-1468, 1996.
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.4 , pp. 1454-1468
    • Wu, W.R.1    Kundu, A.2
  • 63
    • 0028465753 scopus 로고
    • A nonlinear IMM algorithm for maneuvering target tracking
    • W.R. Wu and P.P. Cheng, A nonlinear IMM algorithm for maneuvering target tracking, IEEE Trans. Aerosp. Electron. Syst., AES-30, 875-885, 1994.
    • (1994) IEEE Trans. Aerosp. Electron. Syst , vol.AES-30 , pp. 875-885
    • Wu, W.R.1    Cheng, P.P.2
  • 64
  • 65
    • 0029289544 scopus 로고
    • QQ-plot approach to robust Kalman filtering
    • Z.M. Durovic and B.D. Kovacevic, QQ-plot approach to robust Kalman filtering, Int. J. of Control, 61(4), 837-857, 1994.
    • (1994) Int. J of Control , vol.61 , Issue.4 , pp. 837-857
    • Durovic, Z.M.1    Kovacevic, B.D.2
  • 66
    • 0028425697 scopus 로고
    • Functional approximation by feed-forward networks: A least squares approach to generalization
    • A.R. Webb, Functional approximation by feed-forward networks: A least squares approach to generalization, IEEE Trans. Neural Networks, 5, 363-371, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 363-371
    • Webb, A.R.1
  • 67
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Mooddy and C.J. Darken, Fast learning in networks of locally-tuned processing units, Neural Computat., 1, 281-294, 1989.
    • (1989) Neural Computat. , vol.1 , pp. 281-294
    • Mooddy, J.1    Darken, C.J.2
  • 68
    • 85052444952 scopus 로고    scopus 로고
    • Neural networks and fuzzy basis functions for functional approximation
    • H. Li and M.M. Gupta, Eds., Kluwer Academic Publishers, Dordrecht
    • L. Jin, M.M. Gupta, and P.N. Nikiforuk, Neural networks and fuzzy basis functions for functional approximation, in Fuzzy Logic and Intelligent Systems, H. Li and M.M. Gupta, Eds., Kluwer Academic Publishers, Dordrecht, 1996.
    • (1996) Fuzzy Logic and Intelligent Systems
    • Jin, L.1    Gupta, M.M.2    Nikiforuk, P.N.3
  • 69
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE, 78, 1481-1497, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 71
    • 0004120589 scopus 로고    scopus 로고
    • A.I. Memo No. 1562, Massachusetts Institute of Technology, Boston
    • M.I. Jordan and C.M. Bishop, Neural Networks, A.I. Memo No. 1562, Massachusetts Institute of Technology, Boston, 1996.
    • (1996) Neural Networks
    • Jordan, M.I.1    Bishop, C.M.2
  • 72
    • 0030107268 scopus 로고    scopus 로고
    • Applying radial basis functions
    • B. Mulgrew, Applying radial basis functions, IEEE Signal Process. Mag., 13(2), 50-65, 1996.
    • (1996) IEEE Signal Process. Mag. , vol.13 , Issue.2 , pp. 50-65
    • Mulgrew, B.1
  • 73
    • 0000612809 scopus 로고
    • Fuzzy basis functions: Comparisons with other basis functions
    • H.M. Kim and J.M. Mendel, Fuzzy basis functions: Comparisons with other basis functions, IEEE Trans. Fuzzy Syst., 3, 158-168, 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 158-168
    • Kim, H.M.1    Mendel, J.M.2
  • 77
    • 0029289503 scopus 로고
    • Gaussian mixture density modeling of non-Gaussian source for autoregressive process
    • Y. Zhao, X. Zhuang, and S.J. Ting, Gaussian mixture density modeling of non-Gaussian source for autoregressive process, IEEE Trans. Signal Process., 43(4), 894-903, 1995.
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.4 , pp. 894-903
    • Zhao, Y.1    Zhuang, X.2    Ting, S.J.3
  • 78
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • J. Park and I.W. Sandberg, Universal approximation using radial-basis function networks, Neural Computat., 3, 246-257, 1991.
    • (1991) Neural Computat. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 79
    • 33747682460 scopus 로고
    • Gaussian-mixture basis function networks for nonlinear signal processing
    • I. Cha and S.A. Kassam, Gaussian-mixture basis function networks for nonlinear signal processing, Proc. 1995 Workshop Nonlinear Signal Process., 1, 44-47, 1995.
    • (1995) Proc. 1995 Workshop Nonlinear Signal Process. , vol.1 , pp. 44-47
    • Cha, I.1    Kassam, S.A.2
  • 80
    • 0030165570 scopus 로고    scopus 로고
    • RBNF restoration of nonlinear degraded images
    • I. Cha and S.A. Kassam, RBNF restoration of nonlinear degraded images, IEEE Trans Image Process., 5(6), 964-975, 1996.
    • (1996) IEEE Trans Image Process. , vol.5 , Issue.6 , pp. 964-975
    • Cha, I.1    Kassam, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.