-
1
-
-
84902752899
-
Energy harvesting for the implantable biomedical devices: Issues and challenges
-
Hannan M A, Mutashar S, Samad S A and Hussain A 2014 Energy harvesting for the implantable biomedical devices: issues and challenges Biomed. Eng. Online 13 79
-
(2014)
Biomed. Eng. Online
, vol.13
, pp. 79
-
-
Hannan, M.A.1
Mutashar, S.2
Samad, S.A.3
Hussain, A.4
-
2
-
-
79959289243
-
Energy harvesting sensor nodes: Survey and implications
-
Sudevalayam S and Kulkarni P 2011 Energy harvesting sensor nodes: survey and implications IEEE Commun. Surv. Tut. 13 443-61
-
(2011)
IEEE Commun. Surv. Tut.
, vol.13
, pp. 443-461
-
-
Sudevalayam, S.1
Kulkarni, P.2
-
3
-
-
51649122440
-
Energy harvesting from human and machine motion for wireless electronic devices
-
Mitcheson P D, Yeatman E M, Rao G K, Holmes A S and Green T C 2008 Energy harvesting from human and machine motion for wireless electronic devices Proc. IEEE 96 1457-86
-
(2008)
Proc. IEEE
, vol.96
, pp. 1457-1486
-
-
Mitcheson, P.D.1
Yeatman, E.M.2
Rao, G.K.3
Holmes, A.S.4
Green, T.C.5
-
4
-
-
85043549321
-
Piezoelectric energy harvesting: State-of-the-art and challenges
-
Toprak A and Tigli O 2014 Piezoelectric energy harvesting: state-of-the-art and challenges Appl. Phys. Rev. 1 031104
-
(2014)
Appl. Phys. Rev.
, vol.1
-
-
Toprak, A.1
Tigli, O.2
-
5
-
-
5744241231
-
A piezoelectric vibration based generator for wireless electronics
-
Roundy S and Wright P K 2004 A piezoelectric vibration based generator for wireless electronics Smart Mater. Struct. 13 1131
-
(2004)
Smart Mater. Struct.
, vol.13
, Issue.5
, pp. 1131
-
-
Roundy, S.1
Wright, P.K.2
-
6
-
-
84984633246
-
Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
-
Yang K, Zhihao Y and Meiling Z 2016 Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking Smart Mater. Struct. 25 085029
-
(2016)
Smart Mater. Struct.
, vol.25
, Issue.8
-
-
Yang, K.1
Zhihao, Y.2
Meiling, Z.3
-
7
-
-
27144547214
-
The use of piezoelectric ceramics for electric power generation within orthopedic implants
-
Platt S R, Farritor S, Garvin K and Haider H 2005 The use of piezoelectric ceramics for electric power generation within orthopedic implants IEEE/ASME Trans. Mechatronics 10 455-61
-
(2005)
IEEE/ASME Trans. Mechatronics
, vol.10
, pp. 455-461
-
-
Platt, S.R.1
Farritor, S.2
Garvin, K.3
Haider, H.4
-
8
-
-
84964325374
-
Piezoelectric energy harvester for public roadway: On-site installation and evaluation
-
Xiong H and Wang L 2016 Piezoelectric energy harvester for public roadway: on-site installation and evaluation Appl. Energy 174 101-7
-
(2016)
Appl. Energy
, vol.174
, pp. 101-107
-
-
Xiong, H.1
Wang, L.2
-
9
-
-
84983490124
-
Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study
-
Roshani H, Dessouky S, Montoya A and Papagiannakis A 2016 Energy harvesting from asphalt pavement roadways vehicle-induced stresses: a feasibility study Appl. Energy 182 210-8
-
(2016)
Appl. Energy
, vol.182
, pp. 210-218
-
-
Roshani, H.1
Dessouky, S.2
Montoya, A.3
Papagiannakis, A.4
-
10
-
-
84878307251
-
Energy harvesting using a PZT ceramic multilayer stack
-
Xu T-B et al 2013 Energy harvesting using a PZT ceramic multilayer stack Smart Mater. Struct. 22 065015
-
(2013)
Smart Mater. Struct.
, vol.22
, Issue.6
-
-
Xu, T.-B.1
-
12
-
-
9144256385
-
Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment
-
Kim H W et al 2004 Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment Japan. J. Appl. Phys. 43 6178
-
(2004)
Japan. J. Appl. Phys.
, vol.43
, pp. 6178
-
-
Kim, H.W.1
-
13
-
-
33746814442
-
Modeling of piezoelectric energy harvesting using cymbal transducers
-
Kim H, Priya S and Uchino K 2006 Modeling of piezoelectric energy harvesting using cymbal transducers Japan. J. Appl. Phys. 45 5836
-
(2006)
Japan. J. Appl. Phys.
, vol.45
, pp. 5836
-
-
Kim, H.1
Priya, S.2
Uchino, K.3
-
14
-
-
76949090426
-
Energy harvesting using a modified rectangular cymbal transducer based on 0.71 Pb (Mg1/3Nb2/3) O3-0.29 PbTiO3 single crystal
-
Ren B, Or S W, Zhao X and Luo H 2010 Energy harvesting using a modified rectangular cymbal transducer based on 0.71 Pb (Mg1/3Nb2/3) O3-0.29 PbTiO3 single crystal J. Appl. Phys. 107 034501
-
(2010)
J. Appl. Phys.
, vol.107
-
-
Ren, B.1
Or, S.W.2
Zhao, X.3
Luo, H.4
-
15
-
-
77952282889
-
Modeling and improvement of a cymbal transducer in energy harvesting
-
Yuan J, Shan X, Xie T and Chen W 2010 Modeling and improvement of a cymbal transducer in energy harvesting J. Intell. Mater. Syst. Struct. 21 765-71
-
(2010)
J. Intell. Mater. Syst. Struct.
, vol.21
, pp. 765-771
-
-
Yuan, J.1
Shan, X.2
Xie, T.3
Chen, W.4
-
16
-
-
84862202769
-
Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression
-
Palosaari J, Leinonen M, Hannu J, Juuti J and Jantunen H 2012 Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression J. Electroceram. 28 214-9
-
(2012)
J. Electroceram.
, vol.28
, pp. 214-219
-
-
Palosaari, J.1
Leinonen, M.2
Hannu, J.3
Juuti, J.4
Jantunen, H.5
-
17
-
-
84876794852
-
Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting
-
Mo C, Arnold D, Kinsel W C and Clark W W 2013 Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting J. Intell. Mater. Syst. Struct. 24 828-36
-
(2013)
J. Intell. Mater. Syst. Struct.
, vol.24
, pp. 828-836
-
-
Mo, C.1
Arnold, D.2
Kinsel, W.C.3
Clark, W.W.4
-
18
-
-
79955380630
-
A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting
-
Li X, Guo M and Dong S 2011 A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 698-703
-
(2011)
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
, vol.58
, pp. 698-703
-
-
Li, X.1
Guo, M.2
Dong, S.3
-
19
-
-
84964555258
-
A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads
-
Wang X, Shi Z, Wang J and Xiang H 2016 A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads Smart Mater. Struct. 25 055005
-
(2016)
Smart Mater. Struct.
, vol.25
, Issue.5
-
-
Wang, X.1
Shi, Z.2
Wang, J.3
Xiang, H.4
-
20
-
-
84891781693
-
Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy
-
Daniels A, Zhu M and Tiwari A 2013 Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy J. Phys.: Conf. Ser. 476 012047
-
(2013)
J. Phys.: Conf. Ser.
, vol.476
, Issue.1
-
-
Daniels, A.1
Zhu, M.2
Tiwari, A.3
-
21
-
-
85031112217
-
Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion
-
Luo L, Liu D, Zhu M and Ye J 2016 Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion J. Intell. Mater. Syst. Struct. 1045389X17689943
-
(2016)
J. Intell. Mater. Syst. Struct.
-
-
Luo, L.1
Liu, D.2
Zhu, M.3
Ye, J.4
-
22
-
-
85018492187
-
Floor tile energy harvester for self-powered wireless occupancy sensing
-
Sharpes N, Vuckovic D and Priya S 2016 Floor tile energy harvester for self-powered wireless occupancy sensing Energy Harvest. Syst. 3 43-60
-
(2016)
Energy Harvest. Syst.
, vol.3
, pp. 43-60
-
-
Sharpes, N.1
Vuckovic, D.2
Priya, S.3
-
23
-
-
34447621064
-
Displacement amplification and electric characteristics of modified rectangular cymbal transducers using electroactive materials
-
Luo L, Tang Y, Wang F, He C and Luo H 2007 Displacement amplification and electric characteristics of modified rectangular cymbal transducers using electroactive materials Solid State Commun. 143 321-5
-
(2007)
Solid State Commun.
, vol.143
, pp. 321-325
-
-
Luo, L.1
Tang, Y.2
Wang, F.3
He, C.4
Luo, H.5
-
24
-
-
84890027279
-
Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method
-
Daniels A, Zhu M and Tiwari A 2013 Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 2626-33
-
(2013)
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
, vol.60
, pp. 2626-2633
-
-
Daniels, A.1
Zhu, M.2
Tiwari, A.3
-
25
-
-
84864613336
-
A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement
-
Zhao H, Ling J and Yu J 2012 A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement J. Ceram. Soc. Japan 120 317-23
-
(2012)
J. Ceram. Soc. Japan
, vol.120
, pp. 317-323
-
-
Zhao, H.1
Ling, J.2
Yu, J.3
-
27
-
-
84857291859
-
Charge redistribution in piezoelectric energy harvesters
-
Stewart M, Weaver P M and Cain M 2012 Charge redistribution in piezoelectric energy harvesters Appl. Phys. Lett. 100 073901
-
(2012)
Appl. Phys. Lett.
, vol.100
-
-
Stewart, M.1
Weaver, P.M.2
Cain, M.3
-
29
-
-
85006178786
-
Energy harvesting during human walking to power a wireless sensor node
-
Kuang Y, Ruan T, Chew Z J and Zhu M 2017 Energy harvesting during human walking to power a wireless sensor node Sensors Actuators A 254 69-77
-
(2017)
Sensors Actuators
, vol.254
, pp. 69-77
-
-
Kuang, Y.1
Ruan, T.2
Chew, Z.J.3
Zhu, M.4
|