메뉴 건너뛰기




Volumn 50, Issue 34, 2017, Pages

A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments

Author keywords

cymbal transducer; Piezoelectric energy harvesting; sandwiched piezoelectric transducer; shoe energy harvesting; wearable energy harvesting

Indexed keywords

ENERGY HARVESTING; FINITE ELEMENT METHOD; LOADS (FORCES); PIEZOELECTRICITY; SHOE MANUFACTURE; THERMOELECTRIC POWER; TRANSDUCERS;

EID: 85027259004     PISSN: 00223727     EISSN: 13616463     Source Type: Journal    
DOI: 10.1088/1361-6463/aa7b28     Document Type: Article
Times cited : (48)

References (29)
  • 1
    • 84902752899 scopus 로고    scopus 로고
    • Energy harvesting for the implantable biomedical devices: Issues and challenges
    • Hannan M A, Mutashar S, Samad S A and Hussain A 2014 Energy harvesting for the implantable biomedical devices: issues and challenges Biomed. Eng. Online 13 79
    • (2014) Biomed. Eng. Online , vol.13 , pp. 79
    • Hannan, M.A.1    Mutashar, S.2    Samad, S.A.3    Hussain, A.4
  • 2
    • 79959289243 scopus 로고    scopus 로고
    • Energy harvesting sensor nodes: Survey and implications
    • Sudevalayam S and Kulkarni P 2011 Energy harvesting sensor nodes: survey and implications IEEE Commun. Surv. Tut. 13 443-61
    • (2011) IEEE Commun. Surv. Tut. , vol.13 , pp. 443-461
    • Sudevalayam, S.1    Kulkarni, P.2
  • 3
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • Mitcheson P D, Yeatman E M, Rao G K, Holmes A S and Green T C 2008 Energy harvesting from human and machine motion for wireless electronic devices Proc. IEEE 96 1457-86
    • (2008) Proc. IEEE , vol.96 , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, A.S.4    Green, T.C.5
  • 4
    • 85043549321 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting: State-of-the-art and challenges
    • Toprak A and Tigli O 2014 Piezoelectric energy harvesting: state-of-the-art and challenges Appl. Phys. Rev. 1 031104
    • (2014) Appl. Phys. Rev. , vol.1
    • Toprak, A.1    Tigli, O.2
  • 5
    • 5744241231 scopus 로고    scopus 로고
    • A piezoelectric vibration based generator for wireless electronics
    • Roundy S and Wright P K 2004 A piezoelectric vibration based generator for wireless electronics Smart Mater. Struct. 13 1131
    • (2004) Smart Mater. Struct. , vol.13 , Issue.5 , pp. 1131
    • Roundy, S.1    Wright, P.K.2
  • 6
    • 84984633246 scopus 로고    scopus 로고
    • Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
    • Yang K, Zhihao Y and Meiling Z 2016 Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking Smart Mater. Struct. 25 085029
    • (2016) Smart Mater. Struct. , vol.25 , Issue.8
    • Yang, K.1    Zhihao, Y.2    Meiling, Z.3
  • 7
    • 27144547214 scopus 로고    scopus 로고
    • The use of piezoelectric ceramics for electric power generation within orthopedic implants
    • Platt S R, Farritor S, Garvin K and Haider H 2005 The use of piezoelectric ceramics for electric power generation within orthopedic implants IEEE/ASME Trans. Mechatronics 10 455-61
    • (2005) IEEE/ASME Trans. Mechatronics , vol.10 , pp. 455-461
    • Platt, S.R.1    Farritor, S.2    Garvin, K.3    Haider, H.4
  • 8
    • 84964325374 scopus 로고    scopus 로고
    • Piezoelectric energy harvester for public roadway: On-site installation and evaluation
    • Xiong H and Wang L 2016 Piezoelectric energy harvester for public roadway: on-site installation and evaluation Appl. Energy 174 101-7
    • (2016) Appl. Energy , vol.174 , pp. 101-107
    • Xiong, H.1    Wang, L.2
  • 9
    • 84983490124 scopus 로고    scopus 로고
    • Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study
    • Roshani H, Dessouky S, Montoya A and Papagiannakis A 2016 Energy harvesting from asphalt pavement roadways vehicle-induced stresses: a feasibility study Appl. Energy 182 210-8
    • (2016) Appl. Energy , vol.182 , pp. 210-218
    • Roshani, H.1    Dessouky, S.2    Montoya, A.3    Papagiannakis, A.4
  • 10
    • 84878307251 scopus 로고    scopus 로고
    • Energy harvesting using a PZT ceramic multilayer stack
    • Xu T-B et al 2013 Energy harvesting using a PZT ceramic multilayer stack Smart Mater. Struct. 22 065015
    • (2013) Smart Mater. Struct. , vol.22 , Issue.6
    • Xu, T.-B.1
  • 12
    • 9144256385 scopus 로고    scopus 로고
    • Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment
    • Kim H W et al 2004 Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment Japan. J. Appl. Phys. 43 6178
    • (2004) Japan. J. Appl. Phys. , vol.43 , pp. 6178
    • Kim, H.W.1
  • 13
    • 33746814442 scopus 로고    scopus 로고
    • Modeling of piezoelectric energy harvesting using cymbal transducers
    • Kim H, Priya S and Uchino K 2006 Modeling of piezoelectric energy harvesting using cymbal transducers Japan. J. Appl. Phys. 45 5836
    • (2006) Japan. J. Appl. Phys. , vol.45 , pp. 5836
    • Kim, H.1    Priya, S.2    Uchino, K.3
  • 14
    • 76949090426 scopus 로고    scopus 로고
    • Energy harvesting using a modified rectangular cymbal transducer based on 0.71 Pb (Mg1/3Nb2/3) O3-0.29 PbTiO3 single crystal
    • Ren B, Or S W, Zhao X and Luo H 2010 Energy harvesting using a modified rectangular cymbal transducer based on 0.71 Pb (Mg1/3Nb2/3) O3-0.29 PbTiO3 single crystal J. Appl. Phys. 107 034501
    • (2010) J. Appl. Phys. , vol.107
    • Ren, B.1    Or, S.W.2    Zhao, X.3    Luo, H.4
  • 15
    • 77952282889 scopus 로고    scopus 로고
    • Modeling and improvement of a cymbal transducer in energy harvesting
    • Yuan J, Shan X, Xie T and Chen W 2010 Modeling and improvement of a cymbal transducer in energy harvesting J. Intell. Mater. Syst. Struct. 21 765-71
    • (2010) J. Intell. Mater. Syst. Struct. , vol.21 , pp. 765-771
    • Yuan, J.1    Shan, X.2    Xie, T.3    Chen, W.4
  • 16
    • 84862202769 scopus 로고    scopus 로고
    • Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression
    • Palosaari J, Leinonen M, Hannu J, Juuti J and Jantunen H 2012 Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression J. Electroceram. 28 214-9
    • (2012) J. Electroceram. , vol.28 , pp. 214-219
    • Palosaari, J.1    Leinonen, M.2    Hannu, J.3    Juuti, J.4    Jantunen, H.5
  • 17
    • 84876794852 scopus 로고    scopus 로고
    • Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting
    • Mo C, Arnold D, Kinsel W C and Clark W W 2013 Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting J. Intell. Mater. Syst. Struct. 24 828-36
    • (2013) J. Intell. Mater. Syst. Struct. , vol.24 , pp. 828-836
    • Mo, C.1    Arnold, D.2    Kinsel, W.C.3    Clark, W.W.4
  • 18
    • 79955380630 scopus 로고    scopus 로고
    • A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting
    • Li X, Guo M and Dong S 2011 A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 698-703
    • (2011) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.58 , pp. 698-703
    • Li, X.1    Guo, M.2    Dong, S.3
  • 19
    • 84964555258 scopus 로고    scopus 로고
    • A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads
    • Wang X, Shi Z, Wang J and Xiang H 2016 A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads Smart Mater. Struct. 25 055005
    • (2016) Smart Mater. Struct. , vol.25 , Issue.5
    • Wang, X.1    Shi, Z.2    Wang, J.3    Xiang, H.4
  • 20
    • 84891781693 scopus 로고    scopus 로고
    • Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy
    • Daniels A, Zhu M and Tiwari A 2013 Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy J. Phys.: Conf. Ser. 476 012047
    • (2013) J. Phys.: Conf. Ser. , vol.476 , Issue.1
    • Daniels, A.1    Zhu, M.2    Tiwari, A.3
  • 21
    • 85031112217 scopus 로고    scopus 로고
    • Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion
    • Luo L, Liu D, Zhu M and Ye J 2016 Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion J. Intell. Mater. Syst. Struct. 1045389X17689943
    • (2016) J. Intell. Mater. Syst. Struct.
    • Luo, L.1    Liu, D.2    Zhu, M.3    Ye, J.4
  • 22
    • 85018492187 scopus 로고    scopus 로고
    • Floor tile energy harvester for self-powered wireless occupancy sensing
    • Sharpes N, Vuckovic D and Priya S 2016 Floor tile energy harvester for self-powered wireless occupancy sensing Energy Harvest. Syst. 3 43-60
    • (2016) Energy Harvest. Syst. , vol.3 , pp. 43-60
    • Sharpes, N.1    Vuckovic, D.2    Priya, S.3
  • 23
    • 34447621064 scopus 로고    scopus 로고
    • Displacement amplification and electric characteristics of modified rectangular cymbal transducers using electroactive materials
    • Luo L, Tang Y, Wang F, He C and Luo H 2007 Displacement amplification and electric characteristics of modified rectangular cymbal transducers using electroactive materials Solid State Commun. 143 321-5
    • (2007) Solid State Commun. , vol.143 , pp. 321-325
    • Luo, L.1    Tang, Y.2    Wang, F.3    He, C.4    Luo, H.5
  • 24
    • 84890027279 scopus 로고    scopus 로고
    • Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method
    • Daniels A, Zhu M and Tiwari A 2013 Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 2626-33
    • (2013) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.60 , pp. 2626-2633
    • Daniels, A.1    Zhu, M.2    Tiwari, A.3
  • 25
    • 84864613336 scopus 로고    scopus 로고
    • A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement
    • Zhao H, Ling J and Yu J 2012 A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement J. Ceram. Soc. Japan 120 317-23
    • (2012) J. Ceram. Soc. Japan , vol.120 , pp. 317-323
    • Zhao, H.1    Ling, J.2    Yu, J.3
  • 27
    • 84857291859 scopus 로고    scopus 로고
    • Charge redistribution in piezoelectric energy harvesters
    • Stewart M, Weaver P M and Cain M 2012 Charge redistribution in piezoelectric energy harvesters Appl. Phys. Lett. 100 073901
    • (2012) Appl. Phys. Lett. , vol.100
    • Stewart, M.1    Weaver, P.M.2    Cain, M.3
  • 29
    • 85006178786 scopus 로고    scopus 로고
    • Energy harvesting during human walking to power a wireless sensor node
    • Kuang Y, Ruan T, Chew Z J and Zhu M 2017 Energy harvesting during human walking to power a wireless sensor node Sensors Actuators A 254 69-77
    • (2017) Sensors Actuators , vol.254 , pp. 69-77
    • Kuang, Y.1    Ruan, T.2    Chew, Z.J.3    Zhu, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.