-
1
-
-
77956642720
-
Inequality measures for multivariate distributions
-
Arnold, B.C. Inequality measures for multivariate distributions. Metron 2005, 63, 317–327.
-
(2005)
Metron
, vol.63
, pp. 317-327
-
-
Arnold, B.C.1
-
3
-
-
0031454308
-
Statistical inference and the sen index of poverty
-
Bishop, J.A.; Formby, J.P.; Zheng, B. Statistical inference and the sen index of poverty. Int. Econ. Rev. 1997, 38, 381–387.
-
(1997)
Int. Econ. Rev.
, vol.38
, pp. 381-387
-
-
Bishop, J.A.1
Formby, J.P.2
Zheng, B.3
-
4
-
-
67349102296
-
Reliable inference for the Gini index
-
Davidson, R. Reliable inference for the Gini index. J. Econom. 2009, 150, 30–40.
-
(2009)
J. Econom.
, vol.150
, pp. 30-40
-
-
Davidson, R.1
-
5
-
-
0000407028
-
The estimation of the Lorenz curve and Gini index
-
Gastwirth, J.L. The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 1972, 54, 306–316.
-
(1972)
Rev. Econ. Stat.
, vol.54
, pp. 306-316
-
-
Gastwirth, J.L.1
-
6
-
-
25444505012
-
Confidence interval estimation for inequality indices of the Gini family
-
Palmitesta, P.; Corrado, P.; Cosimo, S. Confidence interval estimation for inequality indices of the Gini family. Comput. Econ. 2000, 16, 137–147.
-
(2000)
Comput. Econ.
, vol.16
, pp. 137-147
-
-
Palmitesta, P.1
Corrado, P.2
Cosimo, S.3
-
7
-
-
34548324285
-
U-statistics and their asymptotic results for some inequality and poverty measures
-
Xu, K. U-statistics and their asymptotic results for some inequality and poverty measures. Econom. Rev. 2007, 26, 567–577.
-
(2007)
Econom. Rev.
, vol.26
, pp. 567-577
-
-
Xu, K.1
-
8
-
-
17444430947
-
Empirical analysis of inequality and welfare
-
Schmidt, S., Pesaran, H., Eds.; Blackwell Publishers Inc.: Malden, MA, USA
-
Maasoumi, E. Empirical analysis of inequality and welfare. In Handbook of Applied Microeconomics; Schmidt, S., Pesaran, H., Eds.; Blackwell Publishers Inc.: Malden, MA, USA, 1997.
-
(1997)
Handbook of Applied Microeconomics
-
-
Maasoumi, E.1
-
9
-
-
0040598449
-
On the non-existence of tests of “student’s" hypothesis having power functions independent of σ
-
Dantzig, G.B. On the non-existence of tests of “student’s" hypothesis having power functions independent of σ. Ann. Math. Stat. 1940, 11, 186–192.
-
(1940)
Ann. Math. Stat.
, vol.11
, pp. 186-192
-
-
Dantzig, G.B.1
-
12
-
-
0001744704
-
A class of statistics with asymptotically normal distribution
-
Hoeffding, W. A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 1948, 19, 293–325.
-
(1948)
Ann. Math. Stat.
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
14
-
-
0003981320
-
-
Van Nostrand: Princeton, NJ, USA
-
Loève, M. Probability Theory; Van Nostrand: Princeton, NJ, USA, 1963.
-
(1963)
Probability Theory
-
-
Loève, M.1
-
16
-
-
85063816252
-
-
No. 714, SOEP Papers on Multidisciplinary Panel Data Research. 2014. Available online, (accessed on 5 March 2016)
-
Schröder, C.; Yitzhaki, S. Reasonable Sample Sizes for Convergence to Normality; No. 714, SOEP Papers on Multidisciplinary Panel Data Research. 2014. Available online: http://papers.ssrn.com/sol3/papers.cfm? abstract_id=2539096 (accessed on 5 March 2016).
-
Reasonable Sample Sizes for Convergence to Normality
-
-
Schröder, C.1
Yitzhaki, S.2
-
17
-
-
2742611860
-
-
Ph.D. Thesis, University of North Carolina, Chapel Hill, NC, USA
-
Sproule, R. A Sequential Fixed-Width Confidence Interval for the Mean of a U-Statistic. Ph.D. Thesis, University of North Carolina, Chapel Hill, NC, USA, 1969.
-
(1969)
A Sequential Fixed-Width Confidence Interval for the Mean of a U-Statistic.
-
-
Sproule, R.1
-
18
-
-
84876215760
-
Two-stage fixed-width confidence intervals for a normal mean in the presence of suspect outliers
-
Chattopadhyay, B.; Mukhopadhyay, N. Two-stage fixed-width confidence intervals for a normal mean in the presence of suspect outliers. Seq. Anal. 2013, 32, 134–157.
-
(2013)
Seq. Anal.
, vol.32
, pp. 134-157
-
-
Chattopadhyay, B.1
Mukhopadhyay, N.2
-
19
-
-
84872650301
-
Variance estimation of the Gini index: Revisiting a result several times published
-
Langel, M.; Tillè, Y. Variance estimation of the Gini index: Revisiting a result several times published. J. R. Stat. Soc. Ser. A Stat. Soc. 2013, 176, 521–540.
-
(2013)
J. R. Stat. Soc. Ser. a Stat. Soc.
, vol.176
, pp. 521-540
-
-
Langel, M.1
Tillè, Y.2
-
20
-
-
11544336904
-
Income distribution functions with disturbances
-
Ransom, M.R.; Cramer, J.S. Income distribution functions with disturbances. Eur. Econ. Rev. 1983, 22, 363–372.
-
(1983)
Eur. Econ. Rev.
, vol.22
, pp. 363-372
-
-
Ransom, M.R.1
Cramer, J.S.2
-
21
-
-
10444245884
-
Asymptotic inference from multi-stage samples
-
Bhattacharya, D. Asymptotic inference from multi-stage samples. J. Econom. 2005, 126, 145–171.
-
(2005)
J. Econom.
, vol.126
, pp. 145-171
-
-
Bhattacharya, D.1
-
22
-
-
33847237564
-
Inference on inequality from household survey data
-
Bhattacharya, D. Inference on inequality from household survey data. J. Econom. 2007, 137, 674–707.
-
(2007)
J. Econom.
, vol.137
, pp. 674-707
-
-
Bhattacharya, D.1
-
23
-
-
0007157016
-
Estimating some measures of income inequality from survey data: An application of the estimating equations approach
-
Binder, D.A.; Kovacevic, M.S. Estimating some measures of income inequality from survey data: An application of the estimating equations approach. Surv. Methodol. 1995, 21, 137–146.
-
(1995)
Surv. Methodol.
, vol.21
, pp. 137-146
-
-
Binder, D.A.1
Kovacevic, M.S.2
-
25
-
-
84926275504
-
Distribution-free statistical inference with Lorenz curves and income shares
-
Beach, C.M.; Davidson, R. Distribution-free statistical inference with Lorenz curves and income shares. Rev. Econ. Stud. 1983, 50, 723–735.
-
(1983)
Rev. Econ. Stud.
, vol.50
, pp. 723-735
-
-
Beach, C.M.1
Davidson, R.2
-
26
-
-
0001350910
-
Statistical inference for stochastic dominance and for the measurement of poverty and inequality
-
Davidson, R.; Duclos, J. Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 2000, 68, 1435–1464.
-
(2000)
Econometrica
, vol.68
, pp. 1435-1464
-
-
Davidson, R.1
Duclos, J.2
-
28
-
-
0033949746
-
Describing inequality in plant size or fecundity
-
Damgaard, C.; Weiner, J. Describing inequality in plant size or fecundity. Ecology 2000, 81, 1139–1142.
-
(2000)
Ecology
, vol.81
, pp. 1139-1142
-
-
Damgaard, C.1
Weiner, J.2
-
31
-
-
51649149761
-
Asymptotic consistency of fixed-width sequential confidence intervals for a multiple regression function
-
Isogai, E. Asymptotic consistency of fixed-width sequential confidence intervals for a multiple regression function. Ann. Inst. Stat. Math. 1986, 38, 69–83.
-
(1986)
Ann. Inst. Stat. Math.
, vol.38
, pp. 69-83
-
-
Isogai, E.1
-
32
-
-
84864608958
-
A tribute to Frank Anscombe and random central limit theorem from 1952
-
Mukhopadhyay, N.; Chattopadhyay, B. A tribute to Frank Anscombe and random central limit theorem from 1952. Seq. Anal. 2012, 31, 265–277.
-
(2012)
Seq. Anal.
, vol.31
, pp. 265-277
-
-
Mukhopadhyay, N.1
Chattopadhyay, B.2
-
34
-
-
0010817047
-
Sequential point estimation of estimable parameters based on U-statistics
-
Sen, P.K.; Ghosh, M. Sequential point estimation of estimable parameters based on U-statistics. Sankhyā Indian J. Stat. Ser. A 1981, 43, 331–344.
-
(1981)
Sankhyā Indian J. Stat. Ser. A
, vol.43
, pp. 331-344
-
-
Sen, P.K.1
Ghosh, M.2
-
35
-
-
0004022867
-
-
Wiley: New York, NY, USA
-
Ghosh, M.; Mukhopadhyay, N.; Sen, P.K. Sequential Estimation; Wiley: New York, NY, USA, 1997.
-
(1997)
Sequential Estimation
-
-
Ghosh, M.1
Mukhopadhyay, N.2
Sen, P.K.3
|