-
1
-
-
2442484002
-
Linear Sequential Rectifying Inspection for Controlling Fraction Defective
-
Anscombe, F. J. (1946). Linear Sequential Rectifying Inspection for Controlling Fraction Defective, Journal of Royal Statistical Society, Supplement 8: 216-222.
-
(1946)
Journal of Royal Statistical Society, Supplement
, vol.8
, pp. 216-222
-
-
Anscombe, F.J.1
-
2
-
-
0001243836
-
The Transformation of Poisson, Binomial and Negative-Binomial Data
-
Anscombe, F. J. (1948a). The Transformation of Poisson, Binomial and Negative-Binomial Data, Biometrika 35: 246-254.
-
(1948)
Biometrika
, vol.35
, pp. 246-254
-
-
Anscombe, F.J.1
-
4
-
-
0344310072
-
Large-Sample Theory of Sequential Estimation
-
Anscombe, F. J. (1949a). Large-Sample Theory of Sequential Estimation, Biometrika 36: 455-458.
-
(1949)
Biometrika
, vol.36
, pp. 455-458
-
-
Anscombe, F.J.1
-
5
-
-
78651023327
-
The Statistical Analysis of Insect Counts Based on the Negative Binomial Distribution
-
Anscombe, F. J. (1949b). The Statistical Analysis of Insect Counts Based on the Negative Binomial Distribution, Biometrics 5: 165-173.
-
(1949)
Biometrics
, vol.5
, pp. 165-173
-
-
Anscombe, F.J.1
-
6
-
-
78651007076
-
Sampling Theory of the Negative Binomial and Logarithmic Series Distribution
-
Anscombe, F. J. (1950). Sampling Theory of the Negative Binomial and Logarithmic Series Distribution, Biometrika37: 358-382.
-
(1950)
Biometrika
, vol.37
, pp. 358-382
-
-
Anscombe, F.J.1
-
9
-
-
0002339335
-
Graphs in Statistical Analysis
-
Anscombe, F. J. (1973). Graphs in Statistical Analysis, American Statistician 27: 17-21.
-
(1973)
American Statistician
, vol.27
, pp. 17-21
-
-
Anscombe, F.J.1
-
12
-
-
84946632720
-
The Examination and Analysis of Residuals
-
Anscombe, F. J. and Tukey, J. W. (1963). The Examination and Analysis of Residuals, Technometrics 5: 141-160.
-
(1963)
Technometrics
, vol.5
, pp. 141-160
-
-
Anscombe, F.J.1
Tukey, J.W.2
-
14
-
-
84864581477
-
-
Development of an IPM System for the Mexican Bean Beetle (Epilachna varivestis Mulsant) as a Pest of Dry Bean (Phaseolus vulgaris L.), Ph.D. diss., University of Nebraska, Lincoln, Nebraska
-
Barrigossi, J. A. F. (1997). Development of an IPM System for the Mexican Bean Beetle (Epilachna varivestis Mulsant) as a Pest of Dry Bean (Phaseolus vulgaris L.), Ph.D. diss., University of Nebraska, Lincoln, Nebraska.
-
(1997)
-
-
Barrigossi, J.A.F.1
-
15
-
-
0012384920
-
Asymptotic Normality of the Stopping Times of Some Sequential Procedures
-
Bhattacharyya, P. K. and Mallik, A. (1973). Asymptotic Normality of the Stopping Times of Some Sequential Procedures, Annals of Statistics 1: 1203-1211.
-
(1973)
Annals of Statistics
, vol.1
, pp. 1203-1211
-
-
Bhattacharyya, P.K.1
Mallik, A.2
-
17
-
-
0000484047
-
The Berry-Esseen Theorem for U-Statistics
-
Callaert, H. and Janssen, P. (1978). The Berry-Esseen Theorem for U-Statistics, Annals of Statistics 6: 417-421.
-
(1978)
Annals of Statistics
, vol.6
, pp. 417-421
-
-
Callaert, H.1
Janssen, P.2
-
18
-
-
1842663502
-
The Convergence Rate of Fixed-Width Sequential Confidence Intervals for the Mean
-
Callaert, H. and Janssen, P. (1981). The Convergence Rate of Fixed-Width Sequential Confidence Intervals for the Mean, Sankhya, Series A 43: 211-219.
-
(1981)
Sankhya, Series A
, vol.43
, pp. 211-219
-
-
Callaert, H.1
Janssen, P.2
-
19
-
-
0000135976
-
The Order of Normal Approximation for a Studentized U-Statistic
-
Callaert, H. and Veraverbeke, N. (1981). The Order of Normal Approximation for a Studentized U-Statistic, Annals of Statistics 8: 194-200.
-
(1981)
Annals of Statistics
, vol.8
, pp. 194-200
-
-
Callaert, H.1
Veraverbeke, N.2
-
20
-
-
70350343196
-
On the Asymptotic Normality of Stopping Times Based on Robust Estimators
-
Carroll, R. J. (1977). On the Asymptotic Normality of Stopping Times Based on Robust Estimators, Sankhya, Series A 39: 355-377.
-
(1977)
Sankhya, Series A
, vol.39
, pp. 355-377
-
-
Carroll, R.J.1
-
21
-
-
0010589853
-
Extended Renewal Theory and Moment Convergence in Anscombe's Theorem
-
Chow, Y. S., Hsiung, C., and Lai, T. L. (1979). Extended Renewal Theory and Moment Convergence in Anscombe's Theorem, Annals of Probability 7: 304-318.
-
(1979)
Annals of Probability
, vol.7
, pp. 304-318
-
-
Chow, Y.S.1
Hsiung, C.2
Lai, T.L.3
-
22
-
-
0000464632
-
Bounded Regret of a Sequential Procedure for Estimation of the Mean
-
Chow, Y. S. and Martinsek, A. T. (1982). Bounded Regret of a Sequential Procedure for Estimation of the Mean, Annals of Statistics 10: 909-914.
-
(1982)
Annals of Statistics
, vol.10
, pp. 909-914
-
-
Chow, Y.S.1
Martinsek, A.T.2
-
23
-
-
0001336620
-
On the Asymptotic Theory of Fixed Width Confidence Intervals for the Mean
-
Chow, Y. S. and Robbins, H. (1965). On the Asymptotic Theory of Fixed Width Confidence Intervals for the Mean, Annals of Mathematical Statistics 36: 457-462.
-
(1965)
Annals of Mathematical Statistics
, vol.36
, pp. 457-462
-
-
Chow, Y.S.1
Robbins, H.2
-
24
-
-
0001228009
-
The Performance of a Sequential Procedure for the Estimation of the Mean
-
Chow, Y. S. and Yu, K. F. (1981). The Performance of a Sequential Procedure for the Estimation of the Mean, Annals of Statistics 9: 184-188.
-
(1981)
Annals of Statistics
, vol.9
, pp. 184-188
-
-
Chow, Y.S.1
Yu, K.F.2
-
25
-
-
0041495013
-
-
On the Convergence Rate of Fixed-Width Sequential Confidence Intervals, Scandinavian Actuarial Journal 107-111
-
Csenki, A. (1980). On the Convergence Rate of Fixed-Width Sequential Confidence Intervals, Scandinavian Actuarial Journal 107-111.
-
(1980)
-
-
Csenki, A.1
-
27
-
-
84988112993
-
Asymptotic Properties of Randomly Indexed Sequences of Random Variables
-
Csörgõ, M. and Rychlik, Z. (1981). Asymptotic Properties of Randomly Indexed Sequences of Random Variables, Canadian Journal of Statistics 9: 101-107.
-
(1981)
Canadian Journal of Statistics
, vol.9
, pp. 101-107
-
-
Csörgõ, M.1
Rychlik, Z.2
-
28
-
-
0000918967
-
Sequential Confidence Intervals Based on Rank Tests
-
Geertsema, J. C. (1970). Sequential Confidence Intervals Based on Rank Tests, Annals of Mathematical Statistics 41: 1016-1026.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, pp. 1016-1026
-
-
Geertsema, J.C.1
-
30
-
-
79957990056
-
Rate of Convergence to Normality for Random Means: Applications to Sequential Estimation
-
Ghosh, M. (1980). Rate of Convergence to Normality for Random Means: Applications to Sequential Estimation, Sankhya, Series A 42: 231-240.
-
(1980)
Sankhya, Series A
, vol.42
, pp. 231-240
-
-
Ghosh, M.1
-
31
-
-
0042997600
-
Berry-Esseen Theorems for U-Statistics in the Non IID Case
-
Budapest, Hungary
-
Ghosh, M. and DasGupta, R. (1980). Berry-Esseen Theorems for U-Statistics in the Non IID Case, in Proceedings of Nonparametric Statistical Inference, pp. 219-313, Budapest, Hungary.
-
(1980)
Proceedings of Nonparametric Statistical Inference
, pp. 219-313
-
-
Ghosh, M.1
DasGupta, R.2
-
32
-
-
0010895056
-
-
unpublished manuscript, Indian Statistical Institute, Calcutta, India
-
Ghosh, M. and Mukhopadhyay, N. (1975). Asymptotic Normality of Stopping Times in Sequential Analysis, unpublished manuscript, Indian Statistical Institute, Calcutta, India.
-
(1975)
Asymptotic Normality of Stopping Times in Sequential Analysis
-
-
Ghosh, M.1
Mukhopadhyay, N.2
-
33
-
-
33244495983
-
On Two Fundamental Problems of Sequential Estimation
-
Ghosh, M. and Mukhopadhyay, N. (1976). On Two Fundamental Problems of Sequential Estimation, Sankhya, Series B 38: 203-218.
-
(1976)
Sankhya, Series B
, vol.38
, pp. 203-218
-
-
Ghosh, M.1
Mukhopadhyay, N.2
-
36
-
-
67649356213
-
Sequential Confidence Intervals for the Regression Coefficient Based on Kendall's Tau
-
Ghosh, M. and Sen, P. K. (1971). Sequential Confidence Intervals for the Regression Coefficient Based on Kendall's Tau, Calcutta Statistical Association Bulletin 20: 23-36.
-
(1971)
Calcutta Statistical Association Bulletin
, vol.20
, pp. 23-36
-
-
Ghosh, M.1
Sen, P.K.2
-
37
-
-
70350345028
-
On Bounded Length Confidence Intervals for the Regression Coefficient Based on a Class of Rank Statistics
-
Ghosh, M. and Sen, P. K. (1972). On Bounded Length Confidence Intervals for the Regression Coefficient Based on a Class of Rank Statistics, Sankhya, Series A 34: 33-52.
-
(1972)
Sankhya, Series A
, vol.34
, pp. 33-52
-
-
Ghosh, M.1
Sen, P.K.2
-
39
-
-
0001744704
-
A Class of Statistics with Asymptotically Normal Distribution
-
Hoeffding, W. (1948). A Class of Statistics with Asymptotically Normal Distribution, Annals of Mathematical Statistics 19: 293-325.
-
(1948)
Annals of Mathematical Statistics
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
42
-
-
0002349882
-
A General Method of Determining Fixed-Width Confidence Intervals
-
Khan, R. A. (1969). A General Method of Determining Fixed-Width Confidence Intervals, Annals of Mathematical Statistics 40: 704-709.
-
(1969)
Annals of Mathematical Statistics
, vol.40
, pp. 704-709
-
-
Khan, R.A.1
-
43
-
-
0000353088
-
A Nonlinear Renewal Theory with Applications to Sequential Analysis I
-
Lai, T. L. and Siegmund, D. (1977). A Nonlinear Renewal Theory with Applications to Sequential Analysis I, Annals of Statistics 5: 946-954.
-
(1977)
Annals of Statistics
, vol.5
, pp. 946-954
-
-
Lai, T.L.1
Siegmund, D.2
-
44
-
-
0000353089
-
A Nonlinear Renewal Theory with Applications to Sequential Analysis II
-
Lai, T. L. and Siegmund, D. (1979). A Nonlinear Renewal Theory with Applications to Sequential Analysis II, Annals of Statistics 7: 60-76.
-
(1979)
Annals of Statistics
, vol.7
, pp. 60-76
-
-
Lai, T.L.1
Siegmund, D.2
-
50
-
-
84864598566
-
Sequential Sampling
-
In:, In: Shaarawi A. H., editorsPiegorsch W. W., editors Wiley
-
Mukhopadhyay, N. (2002). Sequential Sampling, in Encyclopedia of Environmetrics, vol. 4, A. H. Shaarawi and W. W. Piegorsch, eds., pp. 1983-1988, Chichester: Wiley.
-
(2002)
Encyclopedia of Environmetrics
, pp. 1983-1988
-
-
Mukhopadhyay, N.1
-
53
-
-
34248182230
-
Two-Stage Estimation of Mean in a Negative Binomial Distribution with Applications to Mexican Bean Beetle Data
-
Mukhopadhyay, N. and de Silva, B. M. (2005). Two-Stage Estimation of Mean in a Negative Binomial Distribution with Applications to Mexican Bean Beetle Data, Sequential Analysis 24: 99-137.
-
(2005)
Sequential Analysis
, vol.24
, pp. 99-137
-
-
Mukhopadhyay, N.1
de Silva, B.M.2
-
55
-
-
35649014423
-
Two-Stage Sampling for Estimating the Mean of a Negative Binomial Distribution
-
Mukhopadhyay, N. and Diaz, J. (1985). Two-Stage Sampling for Estimating the Mean of a Negative Binomial Distribution, Sequential Analysis 4: 1-18.
-
(1985)
Sequential Analysis
, vol.4
, pp. 1-18
-
-
Mukhopadhyay, N.1
Diaz, J.2
-
57
-
-
0041996014
-
Asymptotic Results for Stopping Times Based on U-Statistics
-
Mukhopadhyay, N. and Vik, G. (1985). Asymptotic Results for Stopping Times Based on U-Statistics, Sequential Analysis4: 83-110.
-
(1985)
Sequential Analysis
, vol.4
, pp. 83-110
-
-
Mukhopadhyay, N.1
Vik, G.2
-
58
-
-
33746825608
-
Sequential Estimation in the Agricultural Sciences
-
In:, In:, In: Mukhopadhyay N., editorsDatta S., editorsChattopadhyay S., editors Dekker
-
Mulekar, M. S. and Young, L. J. (2004). Sequential Estimation in the Agricultural Sciences, in Applied Sequential Methodologies, N. Mukhopadhyay, S. Datta and S. Chattopadhyay, eds., pp. 293-318, New York: Dekker.
-
(2004)
Applied Sequential Methodologies
, pp. 293-318
-
-
Mulekar, M.S.1
Young, L.J.2
-
59
-
-
0039833974
-
Sequential Confidence Intervals for the Mean of a Normal Population with Unknown Variance
-
Ray, W. D. (1957). Sequential Confidence Intervals for the Mean of a Normal Population with Unknown Variance, Journal of Royal Statistical Society, Series B 10: 133-143.
-
(1957)
Journal of Royal Statistical Society, Series B
, vol.10
, pp. 133-143
-
-
Ray, W.D.1
-
60
-
-
0001020082
-
On the Asymptotic Distribution of the Sum of a Random Number of Independent Random Variables
-
Rényi, A. (1957). On the Asymptotic Distribution of the Sum of a Random Number of Independent Random Variables, Acta Mathematica Academiae Scientiarum Hungaricae 8: 193-199.
-
(1957)
Acta Mathematica Academiae Scientiarum Hungaricae
, vol.8
, pp. 193-199
-
-
Rényi, A.1
-
61
-
-
0002403662
-
Sequential Estimation of the Mean of a Normal Population
-
In:, In: Cramer volume H., editorsGrenander U., editors Almquist and Wiksell
-
Robbins, H. (1959). Sequential Estimation of the Mean of a Normal Population, in Probability and Statistics, H. Cramer volume, U. Grenander, ed., pp. 235-245, Uppsala: Almquist and Wiksell.
-
(1959)
Probability and Statistics
, pp. 235-245
-
-
Robbins, H.1
-
64
-
-
2442544745
-
On Bounded Length Sequential Confidence Intervals Based on One-Sample Rank Order Statistics
-
Sen, P. K. and Ghosh, M. (1971). On Bounded Length Sequential Confidence Intervals Based on One-Sample Rank Order Statistics, Annals of Mathematical Statistics 42: 189-203.
-
(1971)
Annals of Mathematical Statistics
, vol.42
, pp. 189-203
-
-
Sen, P.K.1
Ghosh, M.2
-
67
-
-
55449127070
-
On the Asymptotic Normality of One-Sided Stopping Times
-
Siegmund, D. (1968). On the Asymptotic Normality of One-Sided Stopping Times, Annals of Mathematical Statistics 39: 1493-1497.
-
(1968)
Annals of Mathematical Statistics
, vol.39
, pp. 1493-1497
-
-
Siegmund, D.1
-
71
-
-
84864579663
-
Sequential Nonparametric Fixed-Width Confidence Intervals for U-Statistics
-
Sproule, R. N. (1985). Sequential Nonparametric Fixed-Width Confidence Intervals for U-Statistics, Annals of Statistics 13: 228-235.
-
(1985)
Annals of Statistics
, vol.13
, pp. 228-235
-
-
Sproule, R.N.1
-
72
-
-
0001073050
-
Sequential Estimation of the Mean of a First-Order Stationary Autoregressive Process
-
Sriram, T. N. (1987). Sequential Estimation of the Mean of a First-Order Stationary Autoregressive Process, Annals of Statistics 15: 1079-1090.
-
(1987)
Annals of Statistics
, vol.15
, pp. 1079-1090
-
-
Sriram, T.N.1
-
73
-
-
0000537133
-
A Two Sample Test for a Linear Hypothesis Whose Power Is Independent of the Variance
-
Stein, C. (1945). A Two Sample Test for a Linear Hypothesis Whose Power Is Independent of the Variance, Annals of Mathematical Statistics 16: 243-258.
-
(1945)
Annals of Mathematical Statistics
, vol.16
, pp. 243-258
-
-
Stein, C.1
-
74
-
-
0001781308
-
Some Problems in Sequential Estimation
-
Stein, C. (1949). Some Problems in Sequential Estimation, Econometrica 17: 77-78.
-
(1949)
Econometrica
, vol.17
, pp. 77-78
-
-
Stein, C.1
-
75
-
-
84864605101
-
The Density Dependence of Spatial Behavior and the Rarity of Randomness
-
Taylor L. R., Woiwood, I. P. and Perry, J. N. (1978). The Density Dependence of Spatial Behavior and the Rarity of Randomness, Journal of Animal Ecology 16: 426-482.
-
(1978)
Journal of Animal Ecology
, vol.16
, pp. 426-482
-
-
Woiwood, I.P.1
Perry, J.N.2
-
76
-
-
0000090155
-
Sequential Tests of Statistical Hypotheses
-
Wald, A. (1945). Sequential Tests of Statistical Hypotheses, Annals of Mathematical Statistics 16: 426-482.
-
(1945)
Annals of Mathematical Statistics
, vol.16
, pp. 426-482
-
-
Wald, A.1
-
78
-
-
0000193326
-
Optimum Character of the Sequential Probability Ratio Test
-
Wald, A. and Wolfowitz, J. (1948). Optimum Character of the Sequential Probability Ratio Test, Annals of Mathematical Statistics 19: 326-339.
-
(1948)
Annals of Mathematical Statistics
, vol.19
, pp. 326-339
-
-
Wald, A.1
Wolfowitz, J.2
-
79
-
-
0010882614
-
Stopping Times: Termination, Moments, Distribution
-
In:, In: Ghosh B. K., editorsSen P. K., editors Dekker
-
Wijsman, R. (1991). Stopping Times: Termination, Moments, Distribution, in Handbook of Sequential Analysis, B. K. Ghosh and P. K. Sen, eds., pp. 67-119, New York: Dekker.
-
(1991)
Handbook of Sequential Analysis
, pp. 67-119
-
-
Wijsman, R.1
-
81
-
-
35648997562
-
Sequential Estimation of the Mean of the Negative Binomial Distribution
-
Willson, L. J. and Folks, J. L. (1983). Sequential Estimation of the Mean of the Negative Binomial Distribution, Sequential Analysis 2: 55-70.
-
(1983)
Sequential Analysis
, vol.2
, pp. 55-70
-
-
Willson, L.J.1
Folks, J.L.2
-
82
-
-
0000467558
-
Second Order Approximations for Sequential Point and Interval Estimation
-
Woodroofe, M. (1977). Second Order Approximations for Sequential Point and Interval Estimation, Annals of Statistics 5: 984-995.
-
(1977)
Annals of Statistics
, vol.5
, pp. 984-995
-
-
Woodroofe, M.1
-
84
-
-
49849087523
-
Sequential Testing in the Agricultural Sciences
-
In:, In:, In: Mukhopadhyay N., editorsDatta S., editorsChattopadhyay S., editors Dekker
-
Young, L. J. (2004). Sequential Testing in the Agricultural Sciences, in Applied Sequential Methodologies, N. Mukhopadhyay, S. Datta and S. Chattopadhyay, eds., pp. 381-410, New York: Dekker.
-
(2004)
Applied Sequential Methodologies
, pp. 381-410
-
-
Young, L.J.1
-
88
-
-
84876694008
-
-
Recommended by T. K. S. Solanky
-
Recommended by T. K. S. Solanky
-
-
-
|