-
1
-
-
84896786560
-
Ferromagnetic 1D oxide nanostructures grown from chemical solutions in confined geometries
-
Genevrier, A.C., Puig, T., Obradors, X., Mestres, N., Ferromagnetic 1D oxide nanostructures grown from chemical solutions in confined geometries. Chem. Soc. Rev. 43 (2014), 2042–2054.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 2042-2054
-
-
Genevrier, A.C.1
Puig, T.2
Obradors, X.3
Mestres, N.4
-
2
-
-
84961821448
-
4 semiconductor nanostructures for photocatalytic applications
-
4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 49 (2016), 511–519.
-
(2016)
Acc. Chem. Res.
, vol.49
, pp. 511-519
-
-
Regulacio, M.D.1
Han, M.Y.2
-
3
-
-
84947721639
-
2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer
-
2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer. J. Mater. Chem. A 3 (2015), 23597–23606.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 23597-23606
-
-
Mahadik, P.S.1
Shinde, M.2
Cho, J.S.3
-
4
-
-
85013498683
-
Heterojunction photocatalysts
-
Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi, A.A., Heterojunction photocatalysts. Adv. Mater., 29, 2017, 1601694.
-
(2017)
Adv. Mater.
, vol.29
, pp. 1601694
-
-
Low, J.1
Yu, J.2
Jaroniec, M.3
Wageh, S.4
Al-Ghamdi, A.A.5
-
5
-
-
84989958628
-
2 /graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation
-
2 /graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl. Surf. Sci. 390 (2016), 368–376.
-
(2016)
Appl. Surf. Sci.
, vol.390
, pp. 368-376
-
-
Lai, C.1
Wang, M.M.2
Zeng, G.M.3
Liu, Y.G.4
Huang, D.L.5
Zhang, C.6
Wang, R.Z.7
Xu, P.8
Cheng, M.9
Huang, C.10
-
6
-
-
84959440132
-
2 /AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue
-
2 /AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue. Appl. Surf. Sci. 369 (2016), 576–583.
-
(2016)
Appl. Surf. Sci.
, vol.369
, pp. 576-583
-
-
Yang, Y.1
Ma, Z.2
Xu, L.3
Wang, H.4
Fu, N.5
-
9
-
-
84976334760
-
2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction
-
2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl. Surf. Sci. 387 (2016), 89–102.
-
(2016)
Appl. Surf. Sci.
, vol.387
, pp. 89-102
-
-
Nischk, M.1
Mazierski, P.2
Wei, Z.3
Siuzdak, K.4
Kouame, N.A.5
Kowalska, E.6
Remita, H.7
Medynska, A.Z.8
-
10
-
-
84971326394
-
2 heterostructures
-
2 heterostructures. ACS Appl. Mater. Interfaces 8 (2016), 12239–12245.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 12239-12245
-
-
Cao, F.1
Xiong, J.2
Wu, F.3
Liu, Q.4
Shi, Z.5
Yu, Y.6
Wang, X.7
Li, L.8
-
11
-
-
0029882755
-
Electrochemical and photoelectrochemical investigation of single-crystal anatase
-
Kavan, L., Grätzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J., Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118 (1996), 6716–6723.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6716-6723
-
-
Kavan, L.1
Grätzel, M.2
Gilbert, S.E.3
Klemenz, C.4
Scheel, H.J.5
-
15
-
-
84964354677
-
2 nanosheets array for photoelectrochemical application
-
2 nanosheets array for photoelectrochemical application. J. Alloys Compd. 680 (2016), 206–211.
-
(2016)
J. Alloys Compd.
, vol.680
, pp. 206-211
-
-
Yao, H.1
Fu, W.2
Liu, L.3
Li, X.4
Ding, D.5
Su, P.6
Feng, S.7
Yang, H.8
-
16
-
-
84883141002
-
Band alignment of rutile and anatase
-
Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., Sokol, A.A., Band alignment of rutile and anatase. Nat. Mater. 12 (2013), 798–801.
-
(2013)
Nat. Mater.
, vol.12
, pp. 798-801
-
-
Scanlon, D.O.1
Dunnill, C.W.2
Buckeridge, J.3
Shevlin, S.A.4
Logsdail, A.J.5
Woodley, S.M.6
Catlow, C.R.A.7
Powell, M.J.8
Palgrave, R.G.9
Parkin, I.P.10
Watson, G.W.11
Keal, T.W.12
Sherwood, P.13
Walsh, A.14
Sokol, A.A.15
-
17
-
-
84880600198
-
2 nanoflower with anatase?rutile heterojunction as Ag support for efficient visible-light photocatalytic activity
-
2 nanoflower with anatase?rutile heterojunction as Ag support for efficient visible-light photocatalytic activity. Dalton Trans. 42 (2013), 11242–11251.
-
(2013)
Dalton Trans.
, vol.42
, pp. 11242-11251
-
-
Zhou, J.1
Tian, G.2
Chen, Y.3
Wang, J.Q.4
Cao, X.5
Shi, Y.6
Pan, K.7
Fu, H.8
-
19
-
-
84966280406
-
Hierarchical photocatalysts
-
Li, X., Yu, J., Jaroniec, M., Hierarchical photocatalysts. Chem. Soc. Rev. 45 (2016), 2603–2636.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 2603-2636
-
-
Li, X.1
Yu, J.2
Jaroniec, M.3
-
20
-
-
75649098165
-
Semiconductor nanowires for energy conversion
-
Hochbaum, A.H., Yang, P.D., Semiconductor nanowires for energy conversion. Chem. Rev. 110 (2010), 527–546.
-
(2010)
Chem. Rev.
, vol.110
, pp. 527-546
-
-
Hochbaum, A.H.1
Yang, P.D.2
-
23
-
-
84924873205
-
2 and ZnO nanostructures for solar-driven water splitting
-
2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 17 (2015), 7775–7786.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 7775-7786
-
-
Hernandez, S.1
Hidalgo, D.2
Sacco, A.3
Chiodoni, A.4
Lamberti, A.5
Cauda, V.6
Tresso, E.7
Saracco, G.8
-
24
-
-
84866996279
-
2 photocatalysts for efficient solar photocatalytic applications
-
2 photocatalysts for efficient solar photocatalytic applications. Appl. Catal. B: Environ. 129 (2013), 106–113.
-
(2013)
Appl. Catal. B: Environ.
, vol.129
, pp. 106-113
-
-
Lee, H.U.1
Lee, S.C.2
Choi, S.H.3
Son, B.4
Lee, S.J.5
Kim, H.J.6
Lee, J.7
-
25
-
-
84989913254
-
2 cross-linked heterostructure: an efficient strategy to improve charge transport and separation for high photoelectrochemical performance
-
2 cross-linked heterostructure: an efficient strategy to improve charge transport and separation for high photoelectrochemical performance. J. Power Sources 329 (2016), 23–30.
-
(2016)
J. Power Sources
, vol.329
, pp. 23-30
-
-
Han, M.1
Jia, J.2
-
26
-
-
79851509288
-
Review of the anatase to rutile phase transformation
-
Hanaor, D.A.H., Sorrell, C.C., Review of the anatase to rutile phase transformation. J. Mater. Sci. 46 (2011), 855–874.
-
(2011)
J. Mater. Sci.
, vol.46
, pp. 855-874
-
-
Hanaor, D.A.H.1
Sorrell, C.C.2
-
27
-
-
84983414165
-
2 electrode for photoelectrochemical water splitting
-
2 electrode for photoelectrochemical water splitting. Chem. Sci. 7 (2016), 6076–6082.
-
(2016)
Chem. Sci.
, vol.7
, pp. 6076-6082
-
-
Li, A.1
Wang, Z.2
Yin, H.3
Wang, S.4
Yan, P.5
Huang, B.6
Wang, X.7
Li, R.8
Zong, X.9
Han, H.10
Li, C.11
-
29
-
-
80052079183
-
2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach
-
2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach. J. Colloid Interface Sci. 363 (2011), 157–164.
-
(2011)
J. Colloid Interface Sci.
, vol.363
, pp. 157-164
-
-
Wang, C.1
Zhang, X.2
Shao, C.3
Zhang, Y.4
Yang, J.5
Sun, P.6
Liu, X.7
Liu, H.8
Liu, Y.9
Xie, T.10
Wang, D.11
-
30
-
-
27144469302
-
Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry
-
Li Bassi, A., Cattaneo, D., Russo, V., Bottani, C.E., Barborini, E., Mazza, T., Piseri, P., Milani, P., Ernst, F.O., Wegner, K., Pratsinis, S.E., Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J. Appl. Phys., 98, 2005, 074305.
-
(2005)
J. Appl. Phys.
, vol.98
, pp. 074305
-
-
Li Bassi, A.1
Cattaneo, D.2
Russo, V.3
Bottani, C.E.4
Barborini, E.5
Mazza, T.6
Piseri, P.7
Milani, P.8
Ernst, F.O.9
Wegner, K.10
Pratsinis, S.E.11
-
31
-
-
0042731599
-
Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experimental
-
Farges, F., Brown, G.E. Jr., Rehr, J.J., Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experimental. Phys. Rev. B 56 (1997), 1809–1819.
-
(1997)
Phys. Rev. B
, vol.56
, pp. 1809-1819
-
-
Farges, F.1
Brown, G.E.2
Rehr, J.J.3
-
32
-
-
0035438696
-
On-line analysis using raman spectroscopy for process control during the manufacture of titanium dioxide
-
Clegg, I.M., Everall, N.J., King, B., Melvin, H., Norton, C., On-line analysis using raman spectroscopy for process control during the manufacture of titanium dioxide. Appl. Spectrosc. 55 (2001), 1138–1150.
-
(2001)
Appl. Spectrosc.
, vol.55
, pp. 1138-1150
-
-
Clegg, I.M.1
Everall, N.J.2
King, B.3
Melvin, H.4
Norton, C.5
-
34
-
-
84891430043
-
2 –BiOCl double-layer nanostructure arrays for photoelectrochemical water splitting
-
2 –BiOCl double-layer nanostructure arrays for photoelectrochemical water splitting. CrystEngComm 16 (2014), 820–825.
-
(2014)
CrystEngComm
, vol.16
, pp. 820-825
-
-
Fan, W.Q.1
Yu, X.Q.2
Song, S.Y.3
Bai, H.Y.4
Zhang, C.5
Yan, D.6
Liu, C.B.7
Wang, Q.8
Shi, W.D.9
-
36
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
Kudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38 (2009), 253–278.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
37
-
-
84971326394
-
2 heterostructures
-
2 heterostructures. ACS Appl. Mater. Interfaces 8 (2016), 12239–12245.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 12239-12245
-
-
Cao, F.1
Xiong, J.2
Wu, F.3
Liu, Q.4
Shi, Z.5
Yu, Y.6
Wang, X.7
Li, L.8
-
38
-
-
84924873205
-
2 and ZnO nanostructures for solar-driven water splitting
-
2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 17 (2015), 7775–7786.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 7775-7786
-
-
Hernández, S.1
Hidalg, D.2
Sacco, A.3
Chiodoni, A.4
Lamberti, A.5
Cauda, V.6
Tresso, E.7
Saracco, G.8
-
44
-
-
84952705436
-
2 nanotube arrays using ZnO energy barrier by atomic layer deposition
-
2 nanotube arrays using ZnO energy barrier by atomic layer deposition. Appl. Surf. Sci. 388 (2016), 352–358.
-
(2016)
Appl. Surf. Sci.
, vol.388
, pp. 352-358
-
-
Zeng, M.1
Zeng, X.2
Peng, X.3
Zhu, Z.4
Liao, J.5
Liu, K.6
Wang, G.7
Lin, S.8
-
45
-
-
84858237189
-
2 -based nanomaterials
-
2 -based nanomaterials. Adv. Phys. Chem., 2011, 2011, 786759.
-
(2011)
Adv. Phys. Chem.
, vol.2011
, pp. 786759
-
-
Beranek, R.1
-
46
-
-
33947725152
-
2 films for visible light photocurrent response
-
2 films for visible light photocurrent response. Electrochem. Commun. 9 (2007), 761–766.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 761-766
-
-
Beranek, R.1
Kisch, H.2
-
47
-
-
79960486493
-
Supported metal oxide nanosystems for hydrogen photogeneration: quo vadis
-
Barreca, D., Carraro, G., Gombac, V., Gasparotto, A., Maccato, Chiara, Fornasiero, Paolo, Tondello, Eugenio, Supported metal oxide nanosystems for hydrogen photogeneration: quo vadis. Adv. Funct. Mater. 21 (2011), 2611–2623.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 2611-2623
-
-
Barreca, D.1
Carraro, G.2
Gombac, V.3
Gasparotto, A.4
Maccato, C.5
Fornasiero, P.6
Tondello, E.7
-
48
-
-
84984620302
-
Hydrogen generation using non-polar coaxial InGaN/GaN multiple quantum well structure formed on hollow n-GaN nanowires
-
Park, J.H., Mandal, A., Kang, S., Chatterjee, U., Kim, J.S., Park, B.G., Kim, M.D., Jeong, K.U., Lee, C.R., Hydrogen generation using non-polar coaxial InGaN/GaN multiple quantum well structure formed on hollow n-GaN nanowires. Sci. Rep., 6, 2016, 31996.
-
(2016)
Sci. Rep.
, vol.6
, pp. 31996
-
-
Park, J.H.1
Mandal, A.2
Kang, S.3
Chatterjee, U.4
Kim, J.S.5
Park, B.G.6
Kim, M.D.7
Jeong, K.U.8
Lee, C.R.9
-
49
-
-
84883134928
-
2
-
2 . Int. J. Hydrogen Energy 38 (2013), 10739–10745.
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 10739-10745
-
-
Wana, Q.1
Aa, N.2
Bai, Y.3
Hana, H.4
La, J.5
La, X.N.6
Liu, Y.7
-
50
-
-
84908635189
-
2 nanorod arrays decorated with CdS nanoparticles
-
2 nanorod arrays decorated with CdS nanoparticles. Sci. Technol. Adv. Mater., 15, 2014, 055006.
-
(2014)
Sci. Technol. Adv. Mater.
, vol.15
, pp. 055006
-
-
Xie, Z.1
Liu, X.2
Wang, W.3
Liu, C.4
Li, Z.5
Zhang, Z.6
-
52
-
-
34548661475
-
2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters
-
2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigm. 76 (2008), 817–824.
-
(2008)
Dyes Pigm.
, vol.76
, pp. 817-824
-
-
Wang, C.C.1
Lee, C.K.2
Lyu, M.D.3
Juang, L.C.4
-
53
-
-
0141563415
-
The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide
-
Zielińnska, B., Grzechulska, J., Kaleńczuk, R.J., Morawski, A.W., The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide. Appl. Catal. B 45 (2003), 293–300.
-
(2003)
Appl. Catal. B
, vol.45
, pp. 293-300
-
-
Zielińnska, B.1
Grzechulska, J.2
Kaleńczuk, R.J.3
Morawski, A.W.4
-
54
-
-
84921476888
-
Using dyes for evaluating photocatalytic properties: a critical review
-
Malka, R., Sagi, P., Yaron, P., Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20 (2015), 88–110.
-
(2015)
Molecules
, vol.20
, pp. 88-110
-
-
Malka, R.1
Sagi, P.2
Yaron, P.3
-
56
-
-
0037086163
-
Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates
-
Yue, B., Zhou, Y., Xu, J., Wu, Z., Zhang, X., Zou, Y., Jin, S., Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates. Environ. Sci. Technol. 36 (2002), 1325–1329.
-
(2002)
Environ. Sci. Technol.
, vol.36
, pp. 1325-1329
-
-
Yue, B.1
Zhou, Y.2
Xu, J.3
Wu, Z.4
Zhang, X.5
Zou, Y.6
Jin, S.7
-
57
-
-
85016716932
-
2 nano-tube arrays photoelectrode with enhanced visible photocatalytic activity for degradation of organic pollutants
-
2 nano-tube arrays photoelectrode with enhanced visible photocatalytic activity for degradation of organic pollutants. Sep. Purif. Technol. 182 (2017), 230–237.
-
(2017)
Sep. Purif. Technol.
, vol.182
, pp. 230-237
-
-
Deng, X.1
Ma, Q.2
Cui, Y.3
Zhang, H.4
Cheng, X.5
Li, X.6
Xie, M.7
Cheng, Q.8
Li, B.9
-
58
-
-
84863493867
-
A review on the visible light active titanium dioxide photocatalysts for environmental applications
-
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H., Dionysiou, D.D., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125 (2012), 331–349.
-
(2012)
Appl. Catal. B
, vol.125
, pp. 331-349
-
-
Pelaez, M.1
Nolan, N.T.2
Pillai, S.C.3
Seery, M.K.4
Falaras, P.5
Kontos, A.G.6
Dunlop, P.S.M.7
Hamilton, J.W.J.8
Byrne, J.A.9
O'Shea, K.10
Entezari, M.H.11
Dionysiou, D.D.12
-
59
-
-
84255191018
-
Hematite photocatalysis: declorination of 2,6-dichloroindophenol and oxidation of water
-
Baumanis, C., Bloh, J.Z., Dillert, R., Bahnemann, D.W., Hematite photocatalysis: declorination of 2,6-dichloroindophenol and oxidation of water. J. Phys. Chem. C 115 (2011), 25442–25450.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 25442-25450
-
-
Baumanis, C.1
Bloh, J.Z.2
Dillert, R.3
Bahnemann, D.W.4
-
60
-
-
84873181747
-
Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae
-
Baldev, E., MubarakAli, D., Ilavarasi, A., Pandiaraj, D., Sheik Syed Ishack, K.A., Thajuddin, N., Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf. B 105 (2013), 207–214.
-
(2013)
Colloids Surf. B
, vol.105
, pp. 207-214
-
-
Baldev, E.1
MubarakAli, D.2
Ilavarasi, A.3
Pandiaraj, D.4
Sheik Syed Ishack, K.A.5
Thajuddin, N.6
-
61
-
-
34748828094
-
Influence of feedstock and process chemistry on biodiesel quality
-
Saraf, S., Thomas, B., Influence of feedstock and process chemistry on biodiesel quality. Process Saf. Environ. 85 (2007), 360–364.
-
(2007)
Process Saf. Environ.
, vol.85
, pp. 360-364
-
-
Saraf, S.1
Thomas, B.2
-
64
-
-
84879543277
-
2 nanotube arrays
-
2 nanotube arrays. J. Hazard. Mater. 260 (2013), 434–441.
-
(2013)
J. Hazard. Mater.
, vol.260
, pp. 434-441
-
-
Liao, Y.1
Brame, J.2
Que, W.3
Xiu, Z.4
Xie, H.5
Li, Q.6
Fabian, M.7
Alvarez, P.8
-
66
-
-
14144250728
-
2 sol in aqueous solution under visible light irradiation
-
2 sol in aqueous solution under visible light irradiation. Mater. Sci. Eng. B 117 (2005), 325–333.
-
(2005)
Mater. Sci. Eng. B
, vol.117
, pp. 325-333
-
-
Xie, Y.1
Yuan, C.2
Li, X.3
-
67
-
-
84926319229
-
l10
-
l10 . Sci. Rep. 4 (2014), 73841–73848.
-
(2014)
Sci. Rep.
, vol.4
, pp. 73841-73848
-
-
Wang, L.1
Shang, J.2
Hao, W.3
Jiang, S.4
Huang, S.5
Wang, T.6
Sun, Z.7
Du, Y.8
Dou, S.9
Xie, T.10
Wang, D.11
Wang, J.12
-
68
-
-
84924706460
-
A polyoxometalate-assisted approach for synthesis of Pd nanoparticles on graphene nanosheets: synergistic behaviour for enhanced electrocatalytic activity
-
Khadempir, S., Ahmadpour, A., Hamed Mosavian, M.T., Ashraf, N., Bamoharram, Fatemeh F., Mitchelld, S.G., de la Fuente, J.M., A polyoxometalate-assisted approach for synthesis of Pd nanoparticles on graphene nanosheets: synergistic behaviour for enhanced electrocatalytic activity. RSC Adv. 5 (2015), 24319–24326.
-
(2015)
RSC Adv.
, vol.5
, pp. 24319-24326
-
-
Khadempir, S.1
Ahmadpour, A.2
Hamed Mosavian, M.T.3
Ashraf, N.4
Bamoharram, F.F.5
Mitchelld, S.G.6
de la Fuente, J.M.7
-
69
-
-
84961795075
-
High surface area electrodes by template-free self-assembled hierarchical porous gold architecture
-
Morag, A., Golub, T., Becker, J., Jelinek, R., High surface area electrodes by template-free self-assembled hierarchical porous gold architecture. Adv. Colloid Interface Sci. 472 (2016), 84–89.
-
(2016)
Adv. Colloid Interface Sci.
, vol.472
, pp. 84-89
-
-
Morag, A.1
Golub, T.2
Becker, J.3
Jelinek, R.4
-
70
-
-
84936140240
-
One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties
-
Su, Y.Z., Xu, Q.Z., Chen, G.F., Cheng, H., Li, N., Liu, Z.Q., One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochim. Acta 174 (2015), 1216–1224.
-
(2015)
Electrochim. Acta
, vol.174
, pp. 1216-1224
-
-
Su, Y.Z.1
Xu, Q.Z.2
Chen, G.F.3
Cheng, H.4
Li, N.5
Liu, Z.Q.6
|