-
1
-
-
78649725192
-
Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak
-
PMID: 21124761
-
Chew C, Eysenbach G (2010) Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 5: e14118. https://doi.org/10.1371/journal.pone.0014118 PMID: 21124761
-
(2010)
Plos One
, vol.5
-
-
Chew, C.1
Eysenbach, G.2
-
3
-
-
84900419026
-
Twitter: A good place to detect health conditions
-
PMID: 24489699
-
Prieto V, Matos S, Alvarez M, Cacheda F, Oliveira J (2014) Twitter: a good place to detect health conditions. PLoS ONE 9: e86191. https://doi.org/10.1371/journal.pone.0086191 PMID: 24489699
-
(2014)
Plos ONE
, vol.9
-
-
Prieto, V.1
Matos, S.2
Alvarez, M.3
Cacheda, F.4
Oliveira, J.5
-
4
-
-
79955757514
-
The use of Twitter to track levels of disease activity and public concern in the U.S. During the influenza A H1N1 pandemic
-
PMID: 21573238
-
Signorini A, Segre A, Polgreen P (2011) The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One 6: e19467. https://doi.org/10.1371/journal.pone.0019467 PMID: 21573238
-
(2011)
Plos One
, vol.6
-
-
Signorini, A.1
Segre, A.2
Polgreen, P.3
-
5
-
-
85026483522
-
-
May 23–28; Portoroz, Slovenia
-
Yates A, Kolcz A, Goharian N, Frieder O. Effects of sampling on Twitter trend detection.; May 23–28, 2016; Portoroz, Slovenia.
-
(2016)
Effects of Sampling on Twitter Trend Detection
-
-
Yates, A.1
Kolcz, A.2
Goharian, N.3
Frieder, O.4
-
6
-
-
84947256159
-
Using social media for actionable disease surveillance and outbreak management: A systematic literature review
-
PMID: 26437454
-
Charles-Smith L, Reynolds T, Cameron M, Conway M, Lau E, Olsen J, et al. (2015) Using social media for actionable disease surveillance and outbreak management: a systematic literature review. PLoS One 10: e0139701. https://doi.org/10.1371/journal.pone.0139701 PMID: 26437454
-
(2015)
Plos One
, vol.10
-
-
Charles-Smith, L.1
Reynolds, T.2
Cameron, M.3
Conway, M.4
Lau, E.5
Olsen, J.6
-
8
-
-
84895810518
-
Using social media and internet data for public health surveillance: The importance of talking
-
PMID: 24597554
-
Hartley D (2014) Using social media and internet data for public health surveillance: the importance of talking. Milbank Q 92: 34–39. https://doi.org/10.1111/1468-0009.12039 PMID: 24597554
-
(2014)
Milbank Q
, vol.92
, pp. 34-39
-
-
Hartley, D.1
-
9
-
-
84895827710
-
Social media and internet-based data in global systems for public health surveillance: A systematic review
-
PMID: 24597553
-
Velasco E, Agheneza T, Denecke K, Kirchner G, Eckmanns T (2014) Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Q 92: 7–33. https://doi.org/10.1111/1468-0009.12038 PMID: 24597553
-
(2014)
Milbank Q
, vol.92
, pp. 7-33
-
-
Velasco, E.1
Agheneza, T.2
Denecke, K.3
Kirchner, G.4
Eckmanns, T.5
-
10
-
-
84926444178
-
Estimating influenza attack rates in the United States using a participatory cohort
-
PMID: 25835538
-
Chunara R, Goldstein E, Patterson-Lomba O, Brownstein J (2015) Estimating influenza attack rates in the United States using a participatory cohort. Sci Rep 5: 9540. https://doi.org/10.1038/srep09540PMID: 25835538
-
(2015)
Sci Rep
, vol.5
, pp. 9540
-
-
Chunara, R.1
Goldstein, E.2
Patterson-Lomba, O.3
Brownstein, J.4
-
11
-
-
84941360461
-
Flu near you: Crowd-sourced symptom reporting spanning 2 influenza seasons
-
PMID: 26270299
-
Smolinski M, Crawley A, Baltrusaitis K, Chunara R, Olsen J, Wojcik O, et al. (2015) Flu near you: crowd-sourced symptom reporting spanning 2 influenza seasons Am J Public Health 105: 2124–2130. https://doi.org/10.2105/AJPH.2015.302696 PMID: 26270299
-
(2015)
Am J Public Health
, vol.105
, pp. 2124-2130
-
-
Smolinski, M.1
Crawley, A.2
Baltrusaitis, K.3
Chunara, R.4
Olsen, J.5
Wojcik, O.6
-
12
-
-
85014799325
-
Using social media to perform local influenza surveillance in an inner-city hospital: A retrospective observational study
-
PMID: 27014744
-
Broniatowski D, Dredze M, Paul M, Dugas A (2015) Using social media to perform local influenza surveillance in an inner-city hospital: a retrospective observational study. JMIR Public Health Surveill 1: e5. https://doi.org/10.2196/publichealth.4472 PMID: 27014744
-
(2015)
JMIR Public Health Surveill
, vol.1
-
-
Broniatowski, D.1
Dredze, M.2
Paul, M.3
Dugas, A.4
-
13
-
-
84891941337
-
National and local influenza surveillance through Twitter: An analysis of the 2012–2013 influenza epidemic
-
PMID: 24349542
-
Broniatowski D, Paul M, Dredze M (2013) National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLOS One 8: e83672. https://doi.org/10.1371/journal.pone.0083672 PMID: 24349542
-
(2013)
PLOS One
, vol.8
-
-
Broniatowski, D.1
Paul, M.2
Dredze, M.3
-
14
-
-
84910107444
-
A case study of the New York City 2012–2013 influenza season with daily geocoded Twitter data from temporal and spatiotem-poral perspectives
-
PMID: 25331122
-
Nagar R, Yuan Q, Freifeld C, Santillana M, Nojima A, Chunara R, et al. (2014) A case study of the New York City 2012–2013 influenza season with daily geocoded Twitter data from temporal and spatiotem-poral perspectives. J Med Internet Res 16: e236. https://doi.org/10.2196/jmir.3416 PMID: 25331122
-
(2014)
J Med Internet Res
, vol.16
-
-
Nagar, R.1
Yuan, Q.2
Freifeld, C.3
Santillana, M.4
Nojima, A.5
Chunara, R.6
-
15
-
-
84887933657
-
The complex relationship of realspace events and messages in cyberspace: Case study of influenza and pertussis using tweets
-
PMID: 24158773
-
Nagel A, Tsou M, Spitzberg B, An L, Gawron J, Gupta D, An L, et al. (2013) The complex relationship of realspace events and messages in cyberspace: case study of influenza and pertussis using tweets. J Med Internet Res 15: e237. https://doi.org/10.2196/jmir.2705 PMID: 24158773
-
(2013)
J Med Internet Res
, vol.15
-
-
Nagel, A.1
Tsou, M.2
Spitzberg, B.3
An, L.4
Gawron, J.5
Gupta, D.6
An, L.7
-
16
-
-
84896958522
-
-
January 9, Accessed April 25, 2016
-
Duggan M, Ellison N, Lampe C, Lenhart A, Madden M. Social Media Update 2014. January 9, 2015; http://www.pewinternet.org/2015/01/09/social-media-update-2014/. Accessed April 25, 2016.
-
(2015)
Social Media Update 2014
-
-
Duggan, M.1
Ellison, N.2
Lampe, C.3
Lenhart, A.4
Madden, M.5
-
18
-
-
84914695342
-
The reliability of tweets as a supplementary method of seasonal influenza surveillance
-
PMID: 25406040
-
Aslam A, Tsou M, Spitzberg B, An L, Gawron J, Gupta D, et al. (2014) The reliability of tweets as a supplementary method of seasonal influenza surveillance. J Med Internet Res 16: e250. https://doi.org/10.2196/jmir.3532 PMID: 25406040
-
(2014)
J Med Internet Res
, vol.16
-
-
Aslam, A.1
Tsou, M.2
Spitzberg, B.3
An, L.4
Gawron, J.5
Gupta, D.6
-
19
-
-
84891813761
-
Influenza-like illness surveillance on Twitter through automated learning of naive language
-
PMID: 24324799
-
Gesualdo F, Stilo G, Agricola E, Gonfiantini M, Pandolfi E, Velardi P, et al. (2013) Influenza-like illness surveillance on Twitter through automated learning of naive language. PLoS One 8: e82489. https://doi.org/10.1371/journal.pone.0082489 PMID: 24324799
-
(2013)
Plos One
, vol.8
-
-
Gesualdo, F.1
Stilo, G.2
Agricola, E.3
Gonfiantini, M.4
Pandolfi, E.5
Velardi, P.6
-
20
-
-
84914179053
-
-
R Foundation for Statistical Computing. Accessed April 25, 2015
-
R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 2014; http://www.R-project.org/. Accessed April 25, 2015.
-
(2014)
R: A Language and Environment for Statistical Computing
-
-
-
22
-
-
85076265982
-
Class imbalance learning methods for support vector machines
-
He h, Ma Y, editors. Wiley-IEEE Press
-
Batuwita R, Paladey V (2013) Class imbalance learning methods for support vector machines. In: He h, Ma Y, editors. Imbalanced Learning: Foundations, Algorithms, and Applications: Wiley—IEEE Press.
-
(2013)
Imbalanced Learning: Foundations, Algorithms, and Applications
-
-
Batuwita, R.1
Paladey, V.2
-
23
-
-
33846667534
-
Code-based syndromic surveillance for influenzalike illness by International Classification of Diseases, Ninth Revision
-
Marsden-Haug N, Foster V, Gould P, Elbert E, Wang H, Pavlin J (2007) Code-based syndromic surveillance for influenzalike illness by International Classification of Diseases, Ninth Revision. Emer Infect Dis 13: 207–216.
-
(2007)
Emer Infect Dis
, vol.13
, pp. 207-216
-
-
Marsden-Haug, N.1
Foster, V.2
Gould, P.3
Elbert, E.4
Wang, H.5
Pavlin, J.6
-
25
-
-
84940412877
-
-
Accessed September 16, 2016
-
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). R package version 1.6–7 2015. https://CRAN.R-project.org/package=e1071. Accessed September 16, 2016.
-
(2015)
e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). R Package Version 1.6-7
-
-
Meyer, D.1
Dimitriadou, E.2
Hornik, K.3
Weingessel, A.4
Leisch, F.5
-
27
-
-
85026439783
-
-
Accessed September 16, 2016
-
SAS. SAS/ETS(R) 9.2 User’s Guide. Prewhitening. http://support.sas.com/documentation/cdl/en/etsug/60372/HTML/default/viewer.htm#etsug_arima_sect033.htm. Accessed September 16, 2016.
-
SAS/ETS(R) 9.2 User’s Guide. Prewhitening
-
-
-
30
-
-
79956040653
-
Towards detecting influenza epidemics by analyzing twitter messages
-
July 25, Accessed September 16, 2016
-
Culotta A. Towards detecting influenza epidemics by analyzing twitter messages. Proceedings of the first workshop on social media analytics. July 25, 2010; http://delivery.acm.org/10.1145/1970000/1964874/p115-culotta.pdf?ip=205.142.197.84&id=1964874&acc=ACTIVE%20SERVICE&key= 1D8E1CA5B8D7D8DD%2EE3810009149F8453%2E4D4702B0C3E38B35%2E4D4702B0C3E 38B35&CFID=838772283&CFTOKEN=79380489&__acm__=1474043726_ 517d4941260476183b263dfed8c53bfa. Accessed September 16, 2016.
-
(2010)
Proceedings of The First Workshop on Social Media Analytics
-
-
Culotta, A.1
-
33
-
-
84883111635
-
OMG U got flu? Analysis of shared health messages for bio-surveillance
-
Collier N, Son N, Nguyen N (2011) OMG U got flu? Analysis of shared health messages for bio-surveillance. J Biomed Semantics 2 Suppl 5: S9.
-
(2011)
J Biomed Semantics
, vol.2
, pp. S9
-
-
Collier, N.1
Son, N.2
Nguyen, N.3
-
34
-
-
78650283817
-
An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics
-
PMID: 21134784
-
Torii M, Yin L, Nguyen T, Mazumdar C, Liu H, Hartley D, et al. (2011) An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics. Int J Med Inform 80: 56–66. https://doi.org/10.1016/j.ijmedinf.2010.10.015 PMID: 21134784
-
(2011)
Int J Med Inform
, vol.80
, pp. 56-66
-
-
Torii, M.1
Yin, L.2
Nguyen, T.3
Mazumdar, C.4
Liu, H.5
Hartley, D.6
-
35
-
-
84958561954
-
Situations in 140 characters: Assessing real-world situations on Twitter
-
PMID: 26566125
-
Serfass D, Sherman R (2015) Situations in 140 characters: assessing real-world situations on Twitter. PLoS One 10: e0143051. https://doi.org/10.1371/journal.pone.0143051 PMID: 26566125
-
(2015)
Plos One
, vol.10
-
-
Serfass, D.1
Sherman, R.2
-
37
-
-
84937494688
-
Why Gender and Age Prediction from Tweets is Hard: Lessons from a Crowdsourcing Experiment
-
Townsi L, Rak R, editors; August 23-29, 2014; Dublin, Ireland. Association for Computational Linguistics
-
Nguyen D, Trieschnigg R, Doğruöz A, Gravel R, Theune M, Meder T, et al. Why Gender and Age Prediction from Tweets is Hard: Lessons from a Crowdsourcing Experiment. Proceedings of the 25th International Conference on Computational Linguistics, COLING 2014. In: Townsi L, Rak R, editors; August 23–29, 2014; Dublin, Ireland. Association for Computational Linguistics. pp. pp. 1950–1961.
-
(2014)
Proceedings of The 25th International Conference on Computational Linguistics, COLING 2014
, pp. 1950-1961
-
-
Nguyen, D.1
Trieschnigg, R.2
Doğruöz, A.3
Gravel, R.4
Theune, M.5
Meder, T.6
|