메뉴 건너뛰기




Volumn 5, Issue 1, 2015, Pages 1-15

Health-related hypothesis generation using social media data

Author keywords

Health surveillance; Item set mining; Trend detection; Twitter; Wikipedia

Indexed keywords

MONITORING; SOCIAL NETWORKING (ONLINE);

EID: 84947297228     PISSN: 18695450     EISSN: 18695469     Source Type: Journal    
DOI: 10.1007/s13278-014-0239-8     Document Type: Article
Times cited : (10)

References (47)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules. In: Proceedings of 20th international conference on very large data bases, VLDB
    • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of 20th international conference on very large data bases, VLDB, pp 487–499
    • (1994) pp 487–499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0032283421 scopus 로고    scopus 로고
    • On-line new event detection and tracking. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval
    • Allan J, Papka R, Lavrenko V (1998) On-line new event detection and tracking. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval. ACM
    • (1998) ACM
    • Allan, J.1    Papka, R.2    Lavrenko, V.3
  • 3
    • 80053290412 scopus 로고    scopus 로고
    • Twitter catches the flu: detecting influenza epidemics using twitter. In: Proceedings of the Conference on empirical methods in natural language processing, EMNLP
    • Aramaki E, Maskawa S, Morita M (2011) Twitter catches the flu: detecting influenza epidemics using twitter. In: Proceedings of the Conference on empirical methods in natural language processing, EMNLP, pp 1568–1576
    • (2011) pp 1568–1576
    • Aramaki, E.1    Maskawa, S.2    Morita, M.3
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation. the
    • Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation. the. J Mach Learn Res 3:993–1022
    • (2003) J Mach Learn Res , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 5
    • 85041450428 scopus 로고    scopus 로고
    • Tweaking the Twitter homepage
    • Bowman D (2010) “Tweaking the Twitter homepage”, The offical twitter blog, posted 30 Mar 2010. https://blog.twitter.com/2010/tweaking-twitter-homepage
    • (2010) The offical twitter blog, posted 30 Mar , pp. 2010
    • Bowman, D.1
  • 8
    • 84894154693 scopus 로고    scopus 로고
    • Social media communications networks and pharmacovigilance: SequelAE-2.0. In: Proceedings of the IEEE 15th international conference on e-health networking, applications and services
    • Burger EW, Federoff H, Frieder O, Goharian N, Yates A (2013) Social media communications networks and pharmacovigilance: SequelAE-2.0. In: Proceedings of the IEEE 15th international conference on e-health networking, applications and services, healthcom
    • (2013) healthcom
    • Burger, E.W.1    Federoff, H.2    Frieder, O.3    Goharian, N.4    Yates, A.5
  • 9
    • 84947253168 scopus 로고    scopus 로고
    • Business Wire (2012) Twenty six percent of online adults discuss health information online; privacy cited as the biggest barrier to entry
    • Business Wire (2012) Twenty six percent of online adults discuss health information online; privacy cited as the biggest barrier to entry.http://www.businesswire.com/news/home/20121120005872/en
  • 10
    • 84863381525 scopus 로고    scopus 로고
    • Reading tea leaves: how humans interpret topic models. In: Proceedings of the 23rd annual conference on neural information processing systems, NIPS
    • Chang J, Boyd-Graber JL, Gerrish S, Wang C, Blei DM (2009) Reading tea leaves: how humans interpret topic models. In: Proceedings of the 23rd annual conference on neural information processing systems, NIPS, pp 288–296
    • (2009) pp 288–296
    • Chang, J.1    Boyd-Graber, J.L.2    Gerrish, S.3    Wang, C.4    Blei, D.M.5
  • 11
    • 73349104101 scopus 로고    scopus 로고
    • Social media use in the United States: implications for health communication
    • Chou W, Hunt Y, Beckjord E, Moser R, Hesse B (2009) Social media use in the United States: implications for health communication. J Med Internet Res, 11(4)
    • (2009) J Med Internet Res , vol.11 , Issue.4
    • Chou, W.1    Hunt, Y.2    Beckjord, E.3    Moser, R.4    Hesse, B.5
  • 12
    • 78349277925 scopus 로고    scopus 로고
    • Monitoring influenza trends through mining social media. In Proceedings of the international conference on bioinformatics computational biology
    • Corley C, Mikler A, Singh K, Cook D (2009) Monitoring influenza trends through mining social media. In Proceedings of the international conference on bioinformatics computational biology, ICBCB, pp 340–346
    • (2009) ICBCB , pp. 340-346
    • Corley, C.1    Mikler, A.2    Singh, K.3    Cook, D.4
  • 13
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the 1st workshop on social media analytics
    • Culotta A (2010) Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the 1st workshop on social media analytics, pp 115–122
    • (2010) pp 115–122
    • Culotta, A.1
  • 14
    • 84861052088 scopus 로고    scopus 로고
    • Towards personalized learning to rank for epidemic intelligence based on social media streams. In: Proceedings of the 21st international conference companion on world wide web, WWW
    • Diaz-Aviles E, Stewart A, Velasco E, Denecke K, Nejdl W (2012) Towards personalized learning to rank for epidemic intelligence based on social media streams. In: Proceedings of the 21st international conference companion on world wide web, WWW, pp 495–496
    • (2012) pp 495–496
    • Diaz-Aviles, E.1    Stewart, A.2    Velasco, E.3    Denecke, K.4    Nejdl, W.5
  • 15
    • 55849087943 scopus 로고    scopus 로고
    • Controlling pandemic flu: the value of international air travel restrictions
    • Epstein JM, Goedecke DM, Yu F, Morris RJ, Wagener DK et al (2007) Controlling pandemic flu: the value of international air travel restrictions. PLoS ONE 2(5):e401. doi:10.1371/journal.pone.0000401
    • (2007) PLoS ONE , vol.2 , Issue.5 , pp. e401
    • Epstein, J.M.1    Goedecke, D.M.2    Yu, F.3    Morris, R.J.4    Wagener, D.K.5
  • 16
    • 84947239769 scopus 로고    scopus 로고
    • FluTrends
    • FluTrends. http://www.google.org/flutrends/us/#US
  • 17
    • 39649091877 scopus 로고    scopus 로고
    • Health map: global infectious disease monitoring through automated classification and visualization of internet media reports
    • Freifeld CC, Mandla KD, Reis BY, Brownstein JS (2008) Health map: global infectious disease monitoring through automated classification and visualization of internet media reports. J Am Med Inform Assoc
    • (2008) J Am Med Inform Assoc
    • Freifeld, C.C.1    Mandla, K.D.2    Reis, B.Y.3    Brownstein, J.S.4
  • 19
    • 84862068506 scopus 로고    scopus 로고
    • I can’t get no sleep: discussing# insomnia on twitter. In: Proceedings of the ACM annual conference on human factors in computing systems, CHI
    • Jamison-Powell S, Linehan C, Daley L, Garbett A, Lawson S (2012) I can’t get no sleep: discussing# insomnia on twitter. In: Proceedings of the ACM annual conference on human factors in computing systems, CHI, pp 1501–1510
    • (2012) pp 1501–1510
    • Jamison-Powell, S.1    Linehan, C.2    Daley, L.3    Garbett, A.4    Lawson, S.5
  • 21
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction theory
    • Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. J Basic Eng 83(1):95–108
    • (1961) J Basic Eng , vol.83 , Issue.1 , pp. 95-108
    • Kalman, R.1    Bucy, R.2
  • 22
    • 0042209915 scopus 로고    scopus 로고
    • Bursty and hierarchical structure in streams
    • Kleinberg J (2003) Bursty and hierarchical structure in streams. Data Min Knowl Disc 7(4):373–397
    • (2003) Data Min Knowl Disc , vol.7 , Issue.4 , pp. 373-397
    • Kleinberg, J.1
  • 23
    • 84920795617 scopus 로고    scopus 로고
    • Time series topic modeling and bursty topic detection of correlated news and twitter. In: Proc
    • Koike D, et al. (2013) Time series topic modeling and bursty topic detection of correlated news and twitter. In: Proc. 6th IJCNLP
    • (2013) 6th IJCNLP
    • Koike, D.1
  • 24
    • 84867410703 scopus 로고    scopus 로고
    • Nowcasting events from the social web with statistical learning
    • Lampos V, Cristianini N (2012) Nowcasting events from the social web with statistical learning. ACM Trans Intell Syst Technol 3(4):72
    • (2012) ACM Trans Intell Syst Technol , vol.3 , Issue.4 , pp. 72
    • Lampos, V.1    Cristianini, N.2
  • 25
    • 63449087382 scopus 로고    scopus 로고
    • PFP: parallel FP-growth for query recommendation. In: Proceedings of the ACM conference on recommender systems
    • Li H, Wang Y, Zhang D, Zhang M, Chang E (2008) PFP: parallel FP-growth for query recommendation. In: Proceedings of the ACM conference on recommender systems, pp 107–114
    • (2008) pp 107–114
    • Li, H.1    Wang, Y.2    Zhang, D.3    Zhang, M.4    Chang, E.5
  • 26
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • McIver DJ, Brownstein JS (2014) Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol 10(4):e1003581
    • (2014) PLoS Comput Biol , vol.10 , Issue.4 , pp. e1003581
    • McIver, D.J.1    Brownstein, J.S.2
  • 27
    • 33244486494 scopus 로고    scopus 로고
    • The global public health intelligence network and early warning outbreak detection: a Canadian contribution to global public health
    • Mykhalovskiy E, Weir L et al (2006) The global public health intelligence network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health 97(1):42
    • (2006) Can J Public Health , vol.97 , Issue.1 , pp. 42
    • Mykhalovskiy, E.1    Weir, L.2
  • 28
    • 84947292185 scopus 로고    scopus 로고
    • Malpractice and malcontent: analyzing medical complaints in twitter
    • In, AAAI Fall Symposium Series
    • Nakhasi A, Passarella R, Bell S, Paul M, Dredze M, Pronovost P (2012) Malpractice and malcontent: analyzing medical complaints in twitter. In: AAAI Fall Symposium Series
    • (2012)
    • Nakhasi, A.1    Passarella, R.2    Bell, S.3    Paul, M.4    Dredze, M.5    Pronovost, P.6
  • 29
    • 84890614558 scopus 로고    scopus 로고
    • From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th international conference on weblogs and social media
    • O’Connor B, Balasubramanyan R, Routledge BR, Smith NA (2010) From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th international conference on weblogs and social media, ICWSM
    • (2010) ICWSM
    • O’Connor, B.1    Balasubramanyan, R.2    Routledge, B.R.3    Smith, N.A.4
  • 30
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • Page E (1954) Continuous inspection schemes. Biometrika 100–115
    • (1954) Biometrika , pp. 100-115
    • Page, E.1
  • 31
    • 85041432422 scopus 로고    scopus 로고
    • (2011) Twitter’s Secret Handshake. The New York Times
    • Parker A (2011) Twitter’s Secret Handshake. The New York Times. Retrieved 26 Jul 2011. http://www.nytimes.com/2011/06/12/fashion/hashtags-a-new-way-for-tweets-cultural-studies.html?_r=2&pagewanted=all&
    • (2011) Retrieved , pp. 26
    • Parker, A.1
  • 32
    • 84857147980 scopus 로고    scopus 로고
    • A distributed platform for global-scale agent-based models of disease transmission. ACM Trans Model Comput Simul
    • Parker J, Epstein JM (2011) A distributed platform for global-scale agent-based models of disease transmission. ACM Trans Model Comput Simul. 22(1) Article 2, p 25
    • (2011) 22(1) Article , vol.2 , pp. 25
    • Parker, J.1    Epstein, J.M.2
  • 34
    • 84893320514 scopus 로고    scopus 로고
    • A model for mining public health topics from twitter
    • Paul M, Dredze M (2012) A model for mining public health topics from twitter. HEALTH 11:16–26
    • (2012) HEALTH , vol.11 , pp. 16-26
    • Paul, M.1    Dredze, M.2
  • 36
    • 84946637626 scopus 로고
    • Control chart tests based on geometric moving averages
    • Roberts S (1959) Control chart tests based on geometric moving averages. Technometrics 1(3):239–250
    • (1959) Technometrics , vol.1 , Issue.3 , pp. 239-250
    • Roberts, S.1
  • 37
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web, WWW
    • Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web, WWW, pp 851–860
    • (2010) pp 851–860
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 38
    • 0004094381 scopus 로고
    • Economic control of quality of manufactured product. vol 509
    • Shewhart W (1931) Economic control of quality of manufactured product. vol 509. ASQ Quality Press
    • (1931) ASQ Quality Press
    • Shewhart, W.1
  • 39
    • 85041442295 scopus 로고    scopus 로고
    • Twitter,Inc. EDGAR. October 15, 2013
    • SEC Amendment 1 to Form S-1 Registration Statement, Twitter,Inc. EDGAR. October 15, 2013. Retrieved 8 Nov 2013. http://www.sec.gov/Archives/edgar/data/1418091/000119312513400028/d564001ds1a.htm
    • (2013) Retrieved , pp. 8
    • Amendment 1 to Form S-1 Registration Statement, S.E.C.1
  • 40
    • 84890668120 scopus 로고    scopus 로고
    • Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Proceedings of the 4th international conference on weblogs and social media
    • Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Proceedings of the 4th international conference on weblogs and social media, ICWSM
    • (2010) ICWSM
    • Tumasjan, A.1    Sprenger, T.O.2    Sandner, P.G.3    Welpe, I.M.4
  • 41
    • 85041451163 scopus 로고    scopus 로고
    • Twitter statistics
    • Twitter statistics. http://www.statisticbrain.com/twitter-statistics/
  • 42
    • 84947265386 scopus 로고    scopus 로고
    • Twitter blogs: measuring tweets
    • Twitter blogs: measuring tweets. http://blog.twitter.com/2010/02/measuring-tweets.html
  • 43
    • 84947219856 scopus 로고    scopus 로고
    • Multi-tweet summarization for flu outbreak detection
    • In, AAAI Fall Symposium Series
    • Wenerstrom B, Kantardzic M, Arabmakki E, Hindi M (2012) Multi-tweet summarization for flu outbreak detection. In: AAAI Fall Symposium Series
    • (2012)
    • Wenerstrom, B.1    Kantardzic, M.2    Arabmakki, E.3    Hindi, M.4
  • 44
    • 84893218384 scopus 로고    scopus 로고
    • Goharian N (2013) ADR trace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites
    • Yates A, Goharian N (2013) ADR trace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. In: Proceedings of the 35th European conference on information retrieval (ECIR 2013)
    • (2013) Proceedings of the 35th European conference on information retrieval (ECIR
    • Yates, A.1
  • 45
    • 85041447507 scopus 로고    scopus 로고
    • Relevance-ranked domain-specific synonym discovery. In: Proceedings of the 36th European conference on information retrieval
    • Yates A, Goharian N, Frieder O (2014) Relevance-ranked domain-specific synonym discovery. In: Proceedings of the 36th European conference on information retrieval, ECIR
    • (2014) ECIR
    • Yates, A.1    Goharian, N.2    Frieder, O.3
  • 46
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • Zaki M (2000) Scalable algorithms for association mining. Knowl Data Eng IEEE Trans 12(3):372–390
    • (2000) Knowl Data Eng IEEE Trans , vol.12 , Issue.3 , pp. 372-390
    • Zaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.