메뉴 건너뛰기




Volumn 10, Issue 2, 2017, Pages

Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MODEL; GENETICS; GROWTH, DEVELOPMENT AND AGING; PHENOTYPE; PLANT GENOME; REPRODUCIBILITY; WHEAT;

EID: 85024491435     PISSN: None     EISSN: 19403372     Source Type: Journal    
DOI: 10.3835/plantgenome2016.11.0111     Document Type: Article
Times cited : (136)

References (39)
  • 1
    • 84991654970 scopus 로고    scopus 로고
    • Heritabilities and genetic correlations for egg weight traits in Iranian fowl by multi trait and random regression models
    • Ahrabi, M.P. 2015. Heritabilities and genetic correlations for egg weight traits in Iranian fowl by multi trait and random regression models. Int. J. Adv. Biol. Biom. Res. 3:108–111.
    • (2015) Int. J. Adv. Biol. Biom. Res. , vol.3 , pp. 108-111
    • Ahrabi, M.P.1
  • 2
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: The new crop breeding frontier
    • Araus, J.L., and J.E. Cairns. 2014. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 19:52–61. doi:10.1016/j. tplants.2013.09.008
    • (2014) Trends Plant Sci , vol.19 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 3
    • 84855444096 scopus 로고    scopus 로고
    • Random regression analyses using B-spline functions to model growth of Nellore cattle
    • Boligon, A., M. Mercadante, R. Lôbo, F. Baldi, and L.G. Albuquerque. 2012. Random regression analyses using B-spline functions to model growth of Nellore cattle. Animal 6:212–220. doi:10.1017/S1751731111001534
    • (2012) Animal , vol.6 , pp. 212-220
    • Boligon, A.1    Mercadante, M.2    Lôbo, R.3    Baldi, F.4    Albuquerque, L.G.5
  • 5
    • 85136354327 scopus 로고    scopus 로고
    • Ridge regression and other kernels for genomic selection with R package rrBLUP
    • Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255. doi:10.3835/plantgenome2011.08.0024
    • (2011) Plant Genome , vol.4 , pp. 250-255
    • Endelman, J.B.1
  • 6
    • 84883199029 scopus 로고    scopus 로고
    • Shrinkage estimation of the realized relationship matrix. G3: Genes, Genomes
    • Endelman, J.B., and J.L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix. G3: Genes, Genomes, Genet. 2:1405–1413. doi:10.1534/g3.112.004259
    • (2012) Genet. , vol.2 , pp. 1405-1413
    • Endelman, J.B.1    Jannink, J.L.2
  • 8
    • 84901008288 scopus 로고    scopus 로고
    • Random regression test-day model for clinical mastitis: Genetic parameters, model comparison, and correlations with indicator traits
    • Gernand, E., and S. König. 2014. Random regression test-day model for clinical mastitis: Genetic parameters, model comparison, and correlations with indicator traits. J. Dairy Sci. 97:3953–3963. doi:10.3168/jds.2013-7830
    • (2014) J. Dairy Sci. , vol.97 , pp. 3953-3963
    • Gernand, E.1    König, S.2
  • 9
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    • Gitelson, A.A., Y.J. Kaufman, and M.N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58:289–298. doi:10.1016/S0034-4257(96)00072-7
    • (1996) Remote Sens. Environ. , vol.58 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 11
    • 84897571691 scopus 로고    scopus 로고
    • Comparison of single-trait and multiple-trait genomic prediction models
    • Guo, G., F. Zhao, Y. Wang, Y. Zhang, L. Du, and G. Su. 2014. Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet. 15:1. doi:10.1186/1471-2156-15-30
    • (2014) BMC Genet , vol.15 , pp. 1
    • Guo, G.1    Zhao, F.2    Wang, Y.3    Zhang, Y.4    Du, L.5    Su, G.6
  • 12
    • 0036511741 scopus 로고    scopus 로고
    • Genetic parameters for various random regression models to describe the weight data of pigs
    • Huisman, A., R. Veerkamp, and J. Van Arendonk. 2002. Genetic parameters for various random regression models to describe the weight data of pigs. J. Anim. Sci. 80:575–582. doi:10.2527/2002.803575x
    • (2002) J. Anim. Sci. , vol.80 , pp. 575-582
    • Huisman, A.1    Veerkamp, R.2    Van Arendonk, J.3
  • 13
    • 33645981138 scopus 로고    scopus 로고
    • Genetic parameters estimated with multitrait and linear spline-random regression models using Gelbvieh early growth data
    • Iwaisaki, H., S. Tsuruta, I. Misztal, and J. Bertrand. 2005. Genetic parameters estimated with multitrait and linear spline-random regression models using Gelbvieh early growth data. J. Anim. Sci. 83:757–763. doi:10.2527/2005.834757x
    • (2005) J. Anim. Sci. , vol.83 , pp. 757-763
    • Iwaisaki, H.1    Tsuruta, S.2    Misztal, I.3    Bertrand, J.4
  • 14
    • 84870707772 scopus 로고    scopus 로고
    • Multiple-trait genomic selection methods increase genetic value prediction accuracy
    • Jia, Y., and J.L. Jannink. 2012. Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522. doi:10.1534/genetics.112.144246
    • (2012) Genetics , vol.192 , pp. 1513-1522
    • Jia, Y.1    Jannink, J.L.2
  • 15
    • 34250316622 scopus 로고    scopus 로고
    • The application of random regression models in the genetic analysis of monthly egg production in turkeys and a comparison with alternative longitudinal models
    • Kranis, A., G. Su, D. Sorensen, and J. Woolliams. 2007. The application of random regression models in the genetic analysis of monthly egg production in turkeys and a comparison with alternative longitudinal models. Poult. Sci. 86:470–475.
    • (2007) Poult. Sci. , vol.86 , pp. 470-475
    • Kranis, A.1    Su, G.2    Sorensen, D.3    Woolliams, J.4
  • 16
    • 0037057555 scopus 로고    scopus 로고
    • Wheat yield estimates using multi-temporal NDVI satellite imagery
    • Labus, M., G. Nielsen, R. Lawrence, R. Engel, and D. Long. 2002. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int. J. Remote Sens. 23:4169–4180. doi:10.1080/01431160110107653
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 4169-4180
    • Labus, M.1    Nielsen, G.2    Lawrence, R.3    Engel, R.4    Long, D.5
  • 17
    • 84930923096 scopus 로고    scopus 로고
    • Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress
    • Mason, R.E., and R.P. Singh. 2014. Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress. Agronomy 4:191–201. doi:10.3390/agronomy4020191
    • (2014) Agronomy , vol.4 , pp. 191-201
    • Mason, R.E.1    Singh, R.P.2
  • 18
    • 38949162554 scopus 로고    scopus 로고
    • Multi-trait and random regression approaches for addressing the wide range of weaning ages in Asturiana de los Valles beef cattle for genetic parameter estimation
    • Menéndez-Buxadera, A., C. Carleos, J. Baro, A. Villa, and J. Cañón. 2008. Multi-trait and random regression approaches for addressing the wide range of weaning ages in Asturiana de los Valles beef cattle for genetic parameter estimation. J. Anim. Sci. 86:278–286. doi:10.2527/jas.2007-0252
    • (2008) J. Anim. Sci. , vol.86 , pp. 278-286
    • Menéndez-Buxadera, A.1    Carleos, C.2    Baro, J.3    Villa, A.4    Cañón, J.5
  • 19
    • 0001426561 scopus 로고    scopus 로고
    • Estimating covariance functions for longitudinal data using a random regression model
    • Meyer, K. 1998. Estimating covariance functions for longitudinal data using a random regression model. Genet. Sel. Evol. 30:221–240. doi:10.1186/1297-9686-30-3-221
    • (1998) Genet. Sel. Evol. , vol.30 , pp. 221-240
    • Meyer, K.1
  • 20
    • 0034030677 scopus 로고    scopus 로고
    • Random regressions to model phenotypic variation in monthly weights of Australian beef cows
    • Meyer, K. 2000. Random regressions to model phenotypic variation in monthly weights of Australian beef cows. Livest. Prod. Sci. 65:19–38. doi:10.1016/S0301-6226(99)00183-9
    • (2000) Livest. Prod. Sci. , vol.65 , pp. 19-38
    • Meyer, K.1
  • 21
    • 24944448660 scopus 로고    scopus 로고
    • Random regression analyses using B-splines to model growth of Australian Angus cattle
    • Meyer, K. 2005. Random regression analyses using B-splines to model growth of Australian Angus cattle. Genet. Sel. Evol. 37:473–500. doi:10.1186/1297-9686-37-6-473
    • (2005) Genet. Sel. Evol. , vol.37 , pp. 473-500
    • Meyer, K.1
  • 22
    • 30244570021 scopus 로고    scopus 로고
    • Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood
    • Meyer, K., and W.G. Hill. 1997. Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood. Livest. Prod. Sci. 47:185–200. doi:10.1016/S0301-6226(96)01414-5
    • (1997) Livest. Prod. Sci. , vol.47 , pp. 185-200
    • Meyer, K.1    Hill, W.G.2
  • 23
    • 33644893363 scopus 로고    scopus 로고
    • Properties of random regression models using linear splines
    • Misztal, I. 2006. Properties of random regression models using linear splines. J. Anim. Breed. Genet. 123:74–80. doi:10.1111/j.1439-0388.2006.00582.x
    • (2006) J. Anim. Breed. Genet. , vol.123 , pp. 74-80
    • Misztal, I.1
  • 24
    • 84880817794 scopus 로고    scopus 로고
    • Genetic evaluation using multi-trait and random regression models in Simmental beef cattle
    • Mota, R., L. Marques, P. Lopes, L. Da Silva, F. Neto, M. de Resende, and R. Torres. 2013. Genetic evaluation using multi-trait and random regression models in Simmental beef cattle. Genet. Mol. Res. 12:2465–2480. doi:10.4238/2013.July.24.2
    • (2013) Genet. Mol. Res. , vol.12 , pp. 2465-2480
    • Mota, R.1    Marques, L.2    Lopes, P.3    Da Silva, L.4    Neto, F.5    De Resende, M.6    Torres, R.7
  • 25
    • 84890201244 scopus 로고    scopus 로고
    • Linear models for the prediction of animal breeding values
    • London, UK
    • Mrode, R.A. 2005. Linear models for the prediction of animal breeding values. CABI Publishing, London, UK. doi:10.1079/9780851990002.0000
    • (2005) CABI Publishing
    • Mrode, R.A.1
  • 26
    • 84926182746 scopus 로고    scopus 로고
    • Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt-stress conditions
    • Narjesi, V., M. Mardi, E.M. Hervan, A. Azadi, M.R. Naghavi, M. Ebrahimi, and A.A. Zali. 2015. Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt-stress conditions. Plant Mol. Biol. Report. 33:2030–2040. doi:10.1007/s11105-015-0876-8
    • (2015) Plant Mol. Biol. Report. , vol.33 , pp. 2030-2040
    • Narjesi, V.1    Mardi, M.2    Hervan, E.M.3    Azadi, A.4    Naghavi, M.R.5    Ebrahimi, M.6    Zali, A.A.7
  • 27
    • 51149110471 scopus 로고    scopus 로고
    • Comparison of genetic parameter estimates of total sperm cells of boars between random regression and multiple trait animal models
    • Oh, S.H., and M. See. 2008. Comparison of genetic parameter estimates of total sperm cells of boars between random regression and multiple trait animal models. Asian-Aust. J. Anim. Sci. 21:923–927.
    • (2008) Asian-Aust. J. Anim. Sci. , vol.21 , pp. 923-927
    • Oh, S.H.1    See, M.2
  • 29
    • 84885467454 scopus 로고    scopus 로고
    • Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population
    • Pszczola, M., R. Veerkamp, Y. De Haas, E. Wall, T. Strabel, and M. Calus. 2013. Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population. Animal 7:1759–1768. doi:10.1017/S175173111300150X
    • (2013) Animal , vol.7 , pp. 1759-1768
    • Pszczola, M.1    Veerkamp, R.2    De Haas, Y.3    Wall, E.4    Strabel, T.5    Calus, M.6
  • 30
    • 0027334401 scopus 로고
    • The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction
    • Quarmby, N., M. Milnes, T. Hindle, and N. Silleos. 1993. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. Int. J. Remote Sens. 14:199–210. doi:10.1080/01431169308904332
    • (1993) Int. J. Remote Sens. , vol.14 , pp. 199-210
    • Quarmby, N.1    Milnes, M.2    Hindle, T.3    Silleos, N.4
  • 32
    • 0242585694 scopus 로고
    • Canopy temperatures of wheat: Relationships with yield and potential as a technique for early generation selection
    • CIMMYT, Mexico, DF
    • Rees, D., K. Sayre, E. Acevedo, T. Nava Sanchez, Z. Lu, E. Zeiger, and A. Limon. 1993. Canopy temperatures of wheat: Relationships with yield and potential as a technique for early generation selection. CIMMYT Wheat Special Report (WPSR). CIMMYT, Mexico, DF.
    • (1993) CIMMYT Wheat Special Report (WPSR)
    • Rees, D.1    Sayre, K.2    Acevedo, E.3    Nava Sanchez, T.4    Lu, Z.5    Zeiger, E.6    Limon, A.7
  • 33
    • 84878558210 scopus 로고    scopus 로고
    • Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat
    • Rutkoski, J., J. Benson, Y. Jia, G. Brown-Guedira, J.L. Jannink, and M. Sorrells. 2012. Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61. doi:10.3835/plantgenome2012.02.0001
    • (2012) Plant Genome , vol.5 , pp. 51-61
    • Rutkoski, J.1    Benson, J.2    Jia, Y.3    Brown-Guedira, G.4    Jannink, J.L.5    Sorrells, M.6
  • 34
    • 79953738813 scopus 로고    scopus 로고
    • Genomic selection for durable stem rust resistance in wheat
    • Rutkoski, J.E., E.L. Heffner, and M.E. Sorrells. 2011. Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173. doi:10.1007/s10681-010-0301-1
    • (2011) Euphytica , vol.179 , pp. 161-173
    • Rutkoski, J.E.1    Heffner, E.L.2    Sorrells, M.E.3
  • 35
    • 84994235616 scopus 로고    scopus 로고
    • Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes
    • Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L.G. Párez, J. Crossa, M. Reynolds, and R. Singh. 2016. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes, Genet. 6:2799–2808. doi:10.1534/g3.116.032888
    • (2016) Genet. , vol.6 , pp. 2799-2808
    • Rutkoski, J.1    Poland, J.2    Mondal, S.3    Autrique, E.4    Párez, L.G.5    Crossa, J.6    Reynolds, M.7    Singh, R.8
  • 37
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:127–150. doi:10.1016/0034-4257(79)90013-0
    • (1979) Remote Sens. Environ. , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 38
    • 0033087217 scopus 로고    scopus 로고
    • Genetic and environmental smoothing of lactation curves with cubic splines
    • White, I., R. Thompson, and S. Brotherstone. 1999. Genetic and environmental smoothing of lactation curves with cubic splines. J. Dairy Sci. 82:632–638. doi:10.3168/jds.S0022-0302(99)75277-X
    • (1999) J. Dairy Sci. , vol.82 , pp. 632-638
    • White, I.1    Thompson, R.2    Brotherstone, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.