메뉴 건너뛰기




Volumn , Issue , 2017, Pages 298-303

Grand challenge: Streamlearner - Distributed incremental machine learning on event streams

Author keywords

Complex event processing; Machine learning; Stream processing

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SYSTEMS PROGRAMMING; DISTRIBUTED COMPUTER SYSTEMS; EDUCATION; LEARNING SYSTEMS; ONLINE SYSTEMS; PATTERN RECOGNITION; SOFTWARE ARCHITECTURE;

EID: 85023175474     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3093742.3095103     Document Type: Conference Paper
Times cited : (9)

References (22)
  • 2
    • 33745289988 scopus 로고    scopus 로고
    • The CQL continuous query language: Semantic foundations and query execution
    • (June 2006)
    • Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous Query Language: Semantic Foundations and Query Execution. The VLDB Journal 15, 2 (June 2006), 121-142. DOI: https://doi.org/10.1007/s00778-004-0147-z
    • (2006) The VLDB Journal , vol.15 , Issue.2 , pp. 121-142
    • Arasu, A.1    Babu, S.2    Widom, J.3
  • 3
    • 84975096964 scopus 로고    scopus 로고
    • Big data, smart cities and city planning
    • (2013)
    • Michael Batty. 2013. Big data, smart cities and city planning. Dialogues in Human Geography 3, 3 (2013), 274-279.
    • (2013) Dialogues in Human Geography , vol.3 , Issue.3 , pp. 274-279
    • Batty, M.1
  • 7
    • 84855339464 scopus 로고    scopus 로고
    • Processing flows of information: From data stream to complex event processing
    • (2012)
    • Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows of information: From data stream to complex event processing. ACM Computing Surveys (CSUR) 44, 3(2012), 15.
    • (2012) ACM Computing Surveys (CSUR) , vol.44 , Issue.3 , pp. 15
    • Cugola, G.1    Margara, A.2
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • (Jan. 2008)
    • Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107-113. DOI: https://doi.org/10.1145/1327452.1327492
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 34848927515 scopus 로고    scopus 로고
    • An enhanced self-organizing incremental neural network for online unsupervised learning
    • (2007)
    • Shen Furao, Tomotaka Ogura, and Osamu Hasegawa. 2007. An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks 20, 8 (2007), 893-903.
    • (2007) Neural Networks , vol.20 , Issue.8 , pp. 893-903
    • Furao, S.1    Ogura, T.2    Hasegawa, O.3
  • 11
    • 84859035700 scopus 로고    scopus 로고
    • Kafka: A distributed messaging system for log processing
    • others
    • Jay Kreps, Neha Narkhede, Jun Rao, and others. 2011. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB. 1-7.
    • (2011) Proceedings of the NetDB , pp. 1-7
    • Kreps, J.1    Narkhede, N.2    Rao, J.3
  • 12
    • 84895057009 scopus 로고    scopus 로고
    • Activity recognition on streaming sensor data
    • (2014)
    • Narayanan C Krishnan and Diane J Cook. 2014. Activity recognition on streaming sensor data. Pervasive and mobile computing 10 (2014), 138-154.
    • (2014) Pervasive and Mobile Computing , vol.10 , pp. 138-154
    • Krishnan, N.C.1    Cook, D.J.2
  • 15
    • 84985909443 scopus 로고    scopus 로고
    • GrapH: Heterogeneity-aware graph computation with adaptive partitioning
    • Christian Mayer, Muhammad Adnan Tariq, Chen Li, and Kurt Rothermel. 2016. GrapH: Heterogeneity-Aware Graph Computation with Adaptive Partitioning. In Proc. of IEEE ICDCS.
    • (2016) Proc. of IEEE ICDCS
    • Mayer, C.1    Tariq, M.A.2    Li, C.3    Rothermel, K.4
  • 16
    • 84938857409 scopus 로고    scopus 로고
    • Predictable low-latency event detection with parallel complex event processing
    • (Aug 2015)
    • Ruben Mayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable Low-Latency Event Detection with Parallel Complex Event Processing. Internet of Things journal, IEEE 2, 4 (Aug 2015), 274-286.
    • (2015) Internet of Things Journal, IEEE , vol.2 , Issue.4 , pp. 274-286
    • Mayer, R.1    Koldehofe, B.2    Rothermel, K.3
  • 20
    • 84873638356 scopus 로고    scopus 로고
    • Ckmeans. Id. Dp: Optimal k-means clustering in one dimension by dynamic programming
    • (2011)
    • Haizhou Wang and Mingzhou Song. 2011. Ckmeans. Id. dp: optimal k-means clustering in one dimension by dynamic programming. The R journal 3, 2 (2011), 29.
    • (2011) The R Journal , vol.3 , Issue.2 , pp. 29
    • Wang, H.1    Song, M.2
  • 21
    • 77956860841 scopus 로고    scopus 로고
    • Bayesian online learning of the hazard rate in change-point problems
    • (2010)
    • Robert C Wilson, Matthew R Nassar, and Joshua I Gold. 2010. Bayesian online learning of the hazard rate in change-point problems. Neural computation 22, 9 (2010), 2452-2476.
    • (2010) Neural Computation , vol.22 , Issue.9 , pp. 2452-2476
    • Wilson, R.C.1    Nassar, M.R.2    Gold, J.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.