-
1
-
-
0016156837
-
Transcription of herpes simplex type 1 DNA in nuclei isolated from infected HEp-2 and KB cells
-
Alwine JC, Steinhart WL, Hill CW. 1974. Transcription of herpes simplex type 1 DNA in nuclei isolated from infected HEp-2 and KB cells. Virology 60:302-307. https://doi.org/10.1016/0042-6822(74)90390-0.
-
(1974)
Virology
, vol.60
, pp. 302-307
-
-
Alwine, J.C.1
Steinhart, W.L.2
Hill, C.W.3
-
2
-
-
0016162063
-
Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins
-
Honess RW, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14:8-19.
-
(1974)
J Virol
, vol.14
, pp. 8-19
-
-
Honess, R.W.1
Roizman, B.2
-
3
-
-
0342284520
-
Regulation of herpesvirus macromolecular synthesis: Sequential transition of polypeptide synthesis requires functional viral polypeptides
-
Honess RW, Roizman B. 1975. Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc Natl Acad Sci USA 72:1276-1280. https://doi.org/10.1073/pnas.72.4.1276.
-
(1975)
Proc Natl Acad Sci USA
, vol.72
, pp. 1276-1280
-
-
Honess, R.W.1
Roizman, B.2
-
4
-
-
0018936767
-
Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175
-
Dixon RA, Schaffer PA. 1980. Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. J Virol 36:189-203.
-
(1980)
J Virol
, vol.36
, pp. 189-203
-
-
Dixon, R.A.1
Schaffer, P.A.2
-
5
-
-
0022358365
-
Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4
-
DeLuca NA, McCarthy AM, Schaffer PA. 1985. Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56:558-570.
-
(1985)
J Virol
, vol.56
, pp. 558-570
-
-
DeLuca, N.A.1
McCarthy, A.M.2
Schaffer, P.A.3
-
6
-
-
0021797441
-
Activation of immediate-early, early, and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4
-
DeLuca NA, Schaffer PA. 1985. Activation of immediate-early, early, and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Mol Cell Biol 5:1997-2008. https://doi.org/10.1128/MCB.5.8.1997.
-
(1985)
Mol Cell Biol
, vol.5
, pp. 1997-2008
-
-
DeLuca, N.A.1
Schaffer, P.A.2
-
7
-
-
0036138854
-
Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro
-
Boutell C, Sadis S, Everett RD. 2002. Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76:841-850. https://doi.org/10.1128/JVI.76.2.841-850.2002.
-
(2002)
J Virol
, vol.76
, pp. 841-850
-
-
Boutell, C.1
Sadis, S.2
Everett, R.D.3
-
8
-
-
0028352769
-
The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0
-
Maul GG, Everett RD. 1994. The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol 75:1223-1233. https://doi.org/10.1099/0022-1317-75-6-1223.
-
(1994)
J Gen Virol
, vol.75
, pp. 1223-1233
-
-
Maul, G.G.1
Everett, R.D.2
-
9
-
-
19644384912
-
Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells
-
Gu H, Liang Y, Mandel G, Roizman B. 2005. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102:7571-7576. https://doi.org/10.1073/pnas.0502658102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 7571-7576
-
-
Gu, H.1
Liang, Y.2
Mandel, G.3
Roizman, B.4
-
10
-
-
0036174361
-
Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection
-
Eidson KM, Hobbs WE, Manning BJ, Carlson P, DeLuca NA. 2002. Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 76:2180-2191. https://doi.org/10.1128/jvi.76.5.2180-2191.2002.
-
(2002)
J Virol
, vol.76
, pp. 2180-2191
-
-
Eidson, K.M.1
Hobbs, W.E.2
Manning, B.J.3
Carlson, P.4
DeLuca, N.A.5
-
11
-
-
0842326034
-
The herpes simplex virus ICP0 RING finger domain inhibits IRF3-and IRF7-mediated activation of interferon-stimulated genes
-
Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL. 2004. The herpes simplex virus ICP0 RING finger domain inhibits IRF3-and IRF7-mediated activation of interferon-stimulated genes. J Virol 78:1675-1684. https://doi.org/10.1128/JVI.78.4.1675-1684.2004.
-
(2004)
J Virol
, vol.78
, pp. 1675-1684
-
-
Lin, R.1
Noyce, R.S.2
Collins, S.E.3
Everett, R.D.4
Mossman, K.L.5
-
12
-
-
0032521214
-
ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif
-
Sandri-Goldin RM. 1998. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev 12:868-879. https://doi.org/10.1101/gad.12.6.868.
-
(1998)
Genes Dev
, vol.12
, pp. 868-879
-
-
Sandri-Goldin, R.M.1
-
13
-
-
33645213186
-
ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection
-
Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. 2006. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol 80:3567-3581. https://doi.org/10.1128/JVI.80.7.3567-3581.2006.
-
(2006)
J Virol
, vol.80
, pp. 3567-3581
-
-
Dai-Ju, J.Q.1
Li, L.2
Johnson, L.A.3
Sandri-Goldin, R.M.4
-
14
-
-
0036114927
-
Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme
-
Zhou C, Knipe DM. 2002. Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme. J Virol 76:5893-5904. https://doi.org/10.1128/JVI.76.12.5893-5904.2002.
-
(2002)
J Virol
, vol.76
, pp. 5893-5904
-
-
Zhou, C.1
Knipe, D.M.2
-
15
-
-
0022399980
-
Herpes simplex virus 1 mutant deleted in the alpha 22 gene: Growth and gene expression in permissive and restrictive cells and establishment of latency in mice
-
Sears AE, Halliburton IW, Meignier B, Silver S, Roizman B. 1985. Herpes simplex virus 1 mutant deleted in the alpha 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol 55:338-346.
-
(1985)
J Virol
, vol.55
, pp. 338-346
-
-
Sears, A.E.1
Halliburton, I.W.2
Meignier, B.3
Silver, S.4
Roizman, B.5
-
16
-
-
0033052041
-
ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II
-
Long MC, Leong V, Schaffer PA, Spencer CA, Rice SA. 1999. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J Virol 73: 5593-5604.
-
(1999)
J Virol
, vol.73
, pp. 5593-5604
-
-
Long, M.C.1
Leong, V.2
Schaffer, P.A.3
Spencer, C.A.4
Rice, S.A.5
-
17
-
-
0027310640
-
In vitro characterization of a herpes simplex virus type 1 ICP22 deletion mutant
-
Poffenberger KL, Raichlen PE, Herman RC. 1993. In vitro characterization of a herpes simplex virus type 1 ICP22 deletion mutant. Virus Genes 7:171-186. https://doi.org/10.1007/BF01702397.
-
(1993)
Virus Genes
, vol.7
, pp. 171-186
-
-
Poffenberger, K.L.1
Raichlen, P.E.2
Herman, R.C.3
-
18
-
-
0027323128
-
Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells
-
Purves FC, Ogle WO, Roizman B. 1993. Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A 90:6701-6705. https://doi.org/10.1073/pnas.90.14.6701.
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, pp. 6701-6705
-
-
Purves, F.C.1
Ogle, W.O.2
Roizman, B.3
-
19
-
-
0018877117
-
Herpes simplex virus phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA
-
Wilcox KW, Kohn A, Sklyanskaya E, Roizman B. 1980. Herpes simplex virus phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA. J Virol 33:167-182.
-
(1980)
J Virol
, vol.33
, pp. 167-182
-
-
Wilcox, K.W.1
Kohn, A.2
Sklyanskaya, E.3
Roizman, B.4
-
20
-
-
0026611071
-
The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22
-
Purves FC, Roizman B. 1992. The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proc Natl Acad Sci U S A 89:7310-7314. https://doi.org/10.1073/pnas.89.16.7310.
-
(1992)
Proc Natl Acad Sci U S A
, vol.89
, pp. 7310-7314
-
-
Purves, F.C.1
Roizman, B.2
-
21
-
-
35649019773
-
Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1
-
Asai R, Ohno T, Kato A, Kawaguchi Y. 2007. Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1. Microbes Infect 9:1434-1438. https://doi.org/10.1016/j.micinf.2007.07.008.
-
(2007)
Microbes Infect
, vol.9
, pp. 1434-1438
-
-
Asai, R.1
Ohno, T.2
Kato, A.3
Kawaguchi, Y.4
-
22
-
-
0019404891
-
A generalized technique for deletion of specific genes in large genomes: Alpha gene 22 of herpes simplex virus 1 is not essential for growth
-
Post LE, Roizman B. 1981. A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25:227-232. https://doi.org/10.1016/0092-8674(81)90247-6.
-
(1981)
Cell
, vol.25
, pp. 227-232
-
-
Post, L.E.1
Roizman, B.2
-
23
-
-
0028321133
-
A herpes simplex virus type 1 ICP22 deletion mutant is altered for virulence and latency in vivo
-
Poffenberger KL, Idowu AD, Fraser-Smith EB, Raichlen PE, Herman RC. 1994. A herpes simplex virus type 1 ICP22 deletion mutant is altered for virulence and latency in vivo. Arch Virol 139:111-119. https://doi.org/10.1007/BF01309458.
-
(1994)
Arch Virol
, vol.139
, pp. 111-119
-
-
Poffenberger, K.L.1
Idowu, A.D.2
Fraser-Smith, E.B.3
Raichlen, P.E.4
Herman, R.C.5
-
24
-
-
58149386424
-
Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression
-
Bastian TW, Rice SA. 2009. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol 83:128-139. https://doi.org/10.1128/JVI.01954-08.
-
(2009)
J Virol
, vol.83
, pp. 128-139
-
-
Bastian, T.W.1
Rice, S.A.2
-
25
-
-
0029089774
-
Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program
-
Rice SA, Long MC, Lam V, Schaffer PA, Spencer CA. 1995. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J Virol 69:5550-5559.
-
(1995)
J Virol
, vol.69
, pp. 5550-5559
-
-
Rice, S.A.1
Long, M.C.2
Lam, V.3
Schaffer, P.A.4
Spencer, C.A.5
-
26
-
-
33748920926
-
ICP22 is required for wild-type composition and infectivity of herpes simplex virus type 1 virions
-
Orlando JS, Balliet JW, Kushnir AS, Astor TL, Kosz-Vnenchak M, Rice SA, Knipe DM, Schaffer PA. 2006. ICP22 is required for wild-type composition and infectivity of herpes simplex virus type 1 virions. J Virol 80: 9381-9390. https://doi.org/10.1128/JVI.01061-06.
-
(2006)
J Virol
, vol.80
, pp. 9381-9390
-
-
Orlando, J.S.1
Balliet, J.W.2
Kushnir, A.S.3
Astor, T.L.4
Kosz-Vnenchak, M.5
Rice, S.A.6
Knipe, D.M.7
Schaffer, P.A.8
-
27
-
-
84874704659
-
HSV-1 ICP22: Hijacking host nuclear functions to enhance viral infection
-
Rice SA, Davido DJ. 2013. HSV-1 ICP22: hijacking host nuclear functions to enhance viral infection. Future Microbiol 8:311-321. https://doi.org/10.2217/fmb.13.4.
-
(2013)
Future Microbiol
, vol.8
, pp. 311-321
-
-
Rice, S.A.1
Davido, D.J.2
-
28
-
-
5444225805
-
Elongation by RNA polymerase II: The short and long of it
-
Sims RJ, Belotserkovskaya R, Reinberg D. 2004. Elongation by RNA polymerase II: the short and long of it. Genes Dev 18:2437-2468. https://doi.org/10.1101/gad.1235904.
-
(2004)
Genes Dev
, vol.18
, pp. 2437-2468
-
-
Sims, R.J.1
Belotserkovskaya, R.2
Reinberg, D.3
-
29
-
-
84872405841
-
Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription
-
Heidemann M, Hintermair C, Voss K, Eick D. 2013. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829:55-62. https://doi.org/10.1016/j.bbagrm.2012.08.013.
-
(2013)
Biochim Biophys Acta
, vol.1829
, pp. 55-62
-
-
Heidemann, M.1
Hintermair, C.2
Voss, K.3
Eick, D.4
-
30
-
-
0028069405
-
RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection
-
Rice SA, Long MC, Lam V, Spencer CA. 1994. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J Virol 68:988-1001.
-
(1994)
J Virol
, vol.68
, pp. 988-1001
-
-
Rice, S.A.1
Long, M.C.2
Lam, V.3
Spencer, C.A.4
-
31
-
-
23844476732
-
Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II
-
Fraser KA, Rice SA. 2005. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II. J Virol 79:11323-11334. https://doi.org/10.1128/JVI.79.17.11323-11334.2005.
-
(2005)
J Virol
, vol.79
, pp. 11323-11334
-
-
Fraser, K.A.1
Rice, S.A.2
-
32
-
-
34248339180
-
Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II
-
Fraser KA, Rice SA. 2007. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J Virol 81:5091-5101. https://doi.org/10.1128/JVI.00184-07.
-
(2007)
J Virol
, vol.81
, pp. 5091-5101
-
-
Fraser, K.A.1
Rice, S.A.2
-
33
-
-
77649217752
-
Herpes simplex virus type 1 immediate-early protein ICP22 Is required for VICE domain formation during productive viral infection
-
Bastian TW, Livingston CM, Weller SK, Rice SA. 2010. Herpes simplex virus type 1 immediate-early protein ICP22 Is required for VICE domain formation during productive viral infection. J Virol 84:2384-2394. https://doi.org/10.1128/JVI.01686-09.
-
(2010)
J Virol
, vol.84
, pp. 2384-2394
-
-
Bastian, T.W.1
Livingston, C.M.2
Weller, S.K.3
Rice, S.A.4
-
34
-
-
84992745543
-
Spatial and temporal resolution of global protein synthesis during HSV infection using bioorthogonal precursors and click chemistry
-
Su Hui Teo C, Serwa RA, O’Hare P. 2016. Spatial and temporal resolution of global protein synthesis during HSV infection using bioorthogonal precursors and click chemistry. PLoS Pathog 12:e1005927. https://doi.org/10.1371/journal.ppat.1005927.
-
(2016)
PLoS Pathog
, vol.12
, pp. 5927
-
-
Su Hui Teo, C.1
Serwa, R.A.2
O’Hare, P.3
-
35
-
-
84930346957
-
Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes
-
Dembowski JA, DeLuca NA. 2015. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes. PLoS Pathog 11:e1004939. https://doi.org/10.1371/journal.ppat.1004939.
-
(2015)
PLoS Pathog
, vol.11
, pp. 4939
-
-
Dembowski, J.A.1
DeLuca, N.A.2
-
36
-
-
85011005436
-
Replication-coupled recruitment of viral and cellular factors to herpes simplex virus type 1 replication forks for the maintenance and expression of viral genomes
-
Dembowski JA, Dremel SE, DeLuca NA. 2017. Replication-coupled recruitment of viral and cellular factors to herpes simplex virus type 1 replication forks for the maintenance and expression of viral genomes. PLoS Pathog 13:e1006166. https://doi.org/10.1371/journal.ppat.1006166.37.
-
(2017)
PLoS Pathog
, vol.13
, pp. 6166
-
-
Dembowski, J.A.1
Dremel, S.E.2
DeLuca, N.A.3
-
37
-
-
84885393420
-
Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription
-
Wagner LM, DeLuca NA. 2013. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One 8:e78242. https://doi.org/10.1371/journal.pone.0078242.
-
(2013)
PLoS One
, vol.8
, pp. 78242
-
-
Wagner, L.M.1
DeLuca, N.A.2
-
38
-
-
0032484098
-
Requirement of RSF and FACT for transcription of chromatin templates in vitro
-
LeRoy G, Orphanides G, Lane WS, Reinberg D. 1998. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282:1900-1904. https://doi.org/10.1126/science.282.5395.1900.
-
(1998)
Science
, vol.282
, pp. 1900-1904
-
-
LeRoy, G.1
Orphanides, G.2
Lane, W.S.3
Reinberg, D.4
-
39
-
-
65449135496
-
FACT facilitates chromatin transcription by RNA polymerases I and III
-
Birch JL, Tan BC, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, Russell J, Lee SC, Zomerdijk JCBM. 2009. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 28:854-865. https://doi.org/10.1038/emboj.2009.33.
-
(2009)
EMBO J
, vol.28
, pp. 854-865
-
-
Birch, J.L.1
Tan, B.C.2
Panov, K.I.3
Panova, T.B.4
Andersen, J.S.5
Owen-Hughes, T.A.6
Russell, J.7
Lee, S.C.8
Zomerdijk, J.C.B.M.9
-
40
-
-
33645787273
-
The products of the herpes simplex virus type 1 immediate-early US1/US1.5 genes down-regulate levels of S-phase-specific cyclins and facilitate virus replication in S-phase Vero cells
-
Orlando JS, Astor TL, Rundle SA, Schaffer PA. 2006. The products of the herpes simplex virus type 1 immediate-early US1/US1.5 genes down-regulate levels of S-phase-specific cyclins and facilitate virus replication in S-phase Vero cells. J Virol 80:4005-4016. https://doi.org/10.1128/JVI.80.8.4005-4016.2006.
-
(2006)
J Virol
, vol.80
, pp. 4005-4016
-
-
Orlando, J.S.1
Astor, T.L.2
Rundle, S.A.3
Schaffer, P.A.4
-
41
-
-
64249139132
-
RNA Pol II accumulates at promoters of growth genes during developmental arrest
-
Baugh LR, Demodena J, Sternberg PW. 2009. RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science 324: 92-94. https://doi.org/10.1126/science.1169628.
-
(2009)
Science
, vol.324
, pp. 92-94
-
-
Baugh, L.R.1
Demodena, J.2
Sternberg, P.W.3
-
42
-
-
79958102996
-
Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells
-
Lester JT, DeLuca NA. 2011. Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells. J Virol 85: 5733-5744. https://doi.org/10.1128/JVI.00385-11.
-
(2011)
J Virol
, vol.85
, pp. 5733-5744
-
-
Lester, J.T.1
DeLuca, N.A.2
-
43
-
-
0242579933
-
The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
-
Mason PB, Struhl K. 2003. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 23:8323-8333. https://doi.org/10.1128/MCB.23.22.8323-8333.2003.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8323-8333
-
-
Mason, P.B.1
Struhl, K.2
-
44
-
-
0041828954
-
FACT facilitates transcription-dependent nucleosome alteration
-
Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. 2003. FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090-1093. https://doi.org/10.1126/science.1085703.
-
(2003)
Science
, vol.301
, pp. 1090-1093
-
-
Belotserkovskaya, R.1
Oh, S.2
Bondarenko, V.A.3
Orphanides, G.4
Studitsky, V.M.5
Reinberg, D.6
-
45
-
-
33746856074
-
De facto nucleosome dynamics
-
Reinberg D, Sims RJ. 2006. De facto nucleosome dynamics. J Biol Chem 281:23297-23301. https://doi.org/10.1074/jbc.R600007200.
-
(2006)
J Biol Chem
, vol.281
, pp. 23297-23301
-
-
Reinberg, D.1
Sims, R.J.2
-
46
-
-
84857119549
-
The role of FACT in making and breaking nucleosomes
-
Formosa T. 2012. The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 1819:247-255. https://doi.org/10.1016/j.bbagrm.2011.07.009.
-
(2012)
Biochim Biophys Acta
, vol.1819
, pp. 247-255
-
-
Formosa, T.1
-
47
-
-
68349131435
-
yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement
-
Xin H, Takahata S, Blanksma M, McCullough L, Stillman DJ, Formosa T. 2009. yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol Cell 35:365-376. https://doi.org/10.1016/j.molcel.2009.06.024.
-
(2009)
Mol Cell
, vol.35
, pp. 365-376
-
-
Xin, H.1
Takahata, S.2
Blanksma, M.3
McCullough, L.4
Stillman, D.J.5
Formosa, T.6
-
48
-
-
77749258180
-
Chromatin dynamics during herpes simplex virus-1 lytic infection
-
Placek BJ, Berger SL. 2010. Chromatin dynamics during herpes simplex virus-1 lytic infection. Biochim Biophys Acta 1799:223-227. https://doi.org/10.1016/j.bbagrm.2010.01.012.
-
(2010)
Biochim Biophys Acta
, vol.1799
, pp. 223-227
-
-
Placek, B.J.1
Berger, S.L.2
-
49
-
-
70350314475
-
Involvement of SSRP1 in latent replication of Kaposi’s sarcoma-associated herpesvirus
-
Hu J, Liu E, Renne R. 2009. Involvement of SSRP1 in latent replication of Kaposi’s sarcoma-associated herpesvirus. J Virol 83:11051-11063. https://doi.org/10.1128/JVI.00907-09.
-
(2009)
J Virol
, vol.83
, pp. 11051-11063
-
-
Hu, J.1
Liu, E.2
Renne, R.3
-
50
-
-
84963853265
-
Inhibition of the FACT complex reduces transcription from the human cytomegalovirus major immediate early promoter in models of lytic and latent replication
-
O’Connor CM, Nukui M, Gurova KV, Murphy EA. 2016. Inhibition of the FACT complex reduces transcription from the human cytomegalovirus major immediate early promoter in models of lytic and latent replication. J Virol 90:4249-4253. https://doi.org/10.1128/JVI.02501-15.
-
(2016)
J Virol
, vol.90
, pp. 4249-4253
-
-
O’Connor, C.M.1
Nukui, M.2
Gurova, K.V.3
Murphy, E.A.4
-
51
-
-
0026775612
-
Spt4, Spt5 and Spt6 Interactions: Effects on transcription and viability in saccharomyces cerevisiae
-
Swanson MS, Winston F. 1992. Spt4, Spt5 and Spt6 Interactions: effects on transcription and viability in saccharomyces cerevisiae. Genetics 132:325-336.
-
(1992)
Genetics
, vol.132
, pp. 325-336
-
-
Swanson, M.S.1
Winston, F.2
-
52
-
-
11144357677
-
Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro
-
Endoh M, Zhu W, Hasegawa J, Watanabe H, Kim DK, Aida M, Inukai N, Narita T, Yamada T, Furuya A, Sato H, Yamaguchi Y, Mandal SS, Reinberg D, Wada T, Handa H. 2004. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol Cell Biol 24:3324-3336. https://doi.org/10.1128/MCB.24.8.3324-3336.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 3324-3336
-
-
Endoh, M.1
Zhu, W.2
Hasegawa, J.3
Watanabe, H.4
Kim, D.K.5
Aida, M.6
Inukai, N.7
Narita, T.8
Yamada, T.9
Furuya, A.10
Sato, H.11
Yamaguchi, Y.12
Mandal, S.S.13
Reinberg, D.14
Wada, T.15
Handa, H.16
-
53
-
-
0036787862
-
RNA polymerase II elongation factors of saccharomyces cerevisiae: A targeted proteomics approach
-
Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF. 2002. RNA polymerase II elongation factors of saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22:6979-6992. https://doi.org/10.1128/MCB.22.20.6979-6992.2002.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 6979-6992
-
-
Krogan, N.J.1
Kim, M.2
Ahn, S.H.3
Zhong, G.4
Kobor, M.S.5
Cagney, G.6
Emili, A.7
Shilatifard, A.8
Buratowski, S.9
Greenblatt, J.F.10
-
54
-
-
0033638442
-
FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH
-
Wada T, Orphanides G, Hasegawa J, Kim DK, Shima D, Yamaguchi Y, Fukuda A, Hisatake K, Oh S, Reinberg D, Handa H. 2000. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol Cell 5:1067-1072. https://doi.org/10.1016/S1097-2765(00)80272-5.
-
(2000)
Mol Cell
, vol.5
, pp. 1067-1072
-
-
Wada, T.1
Orphanides, G.2
Hasegawa, J.3
Kim, D.K.4
Shima, D.5
Yamaguchi, Y.6
Fukuda, A.7
Hisatake, K.8
Oh, S.9
Reinberg, D.10
Handa, H.11
-
55
-
-
84862493306
-
Updating the RNA polymerase CTD code: Adding gene-specific layers
-
Egloff S, Dienstbier M, Murphy S. 2012. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 28:333-341. https://doi.org/10.1016/j.tig.2012.03.007.
-
(2012)
Trends Genet
, vol.28
, pp. 333-341
-
-
Egloff, S.1
Dienstbier, M.2
Murphy, S.3
-
56
-
-
78649684166
-
Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II
-
Diebold ML, Loeliger E, Koch M, Winston F, Cavarelli J, Romier C. 2010. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. J Biol Chem 285:38389-38398. https://doi.org/10.1074/jbc.M110.146696.
-
(2010)
J Biol Chem
, vol.285
, pp. 38389-38398
-
-
Diebold, M.L.1
Loeliger, E.2
Koch, M.3
Winston, F.4
Cavarelli, J.5
Romier, C.6
-
57
-
-
78649713364
-
A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD)
-
Sun M, Larivière L, Dengl S, Mayer A, Cramer P. 2010. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J Biol Chem 285:41597-41603. https://doi.org/10.1074/jbc.M110.144568.
-
(2010)
J Biol Chem
, vol.285
, pp. 41597-41603
-
-
Sun, M.1
Larivière, L.2
Dengl, S.3
Mayer, A.4
Cramer, P.5
-
58
-
-
0031058732
-
Repression of host RNA polymerase II transcription by herpes simplex virus type 1
-
Spencer CA, Dahmus ME, Rice SA. 1997. Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J Virol 71:2031-2040.
-
(1997)
J Virol
, vol.71
, pp. 2031-2040
-
-
Spencer, C.A.1
Dahmus, M.E.2
Rice, S.A.3
-
59
-
-
18744373339
-
The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1
-
Durand LO, Advani SJ, Poon APW, Roizman B. 2005. The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1. J Virol 79:6757-6762. https://doi.org/10.1128/JVI.79.11.6757-6762.2005.
-
(2005)
J Virol
, vol.79
, pp. 6757-6762
-
-
Durand, L.O.1
Advani, S.J.2
Poon, A.P.W.3
Roizman, B.4
-
60
-
-
55249120980
-
Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1
-
Durand LO, Roizman B. 2008. Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J Virol 82:10591-10599. https://doi.org/10.1128/JVI.01242-08.
-
(2008)
J Virol
, vol.82
, pp. 10591-10599
-
-
Durand, L.O.1
Roizman, B.2
-
61
-
-
84885709701
-
Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription
-
Ou M, Sandri-Goldin RM. 2013. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription. PLoS One 8:e79007. https://doi.org/10.1371/journal.pone.0079007.
-
(2013)
PLoS One
, vol.8
, pp. 79007
-
-
Ou, M.1
Sandri-Goldin, R.M.2
-
62
-
-
84907199742
-
Herpes simplex virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymer-ase II transcription elongation
-
Zaborowska J, Baumli S, Laitem C, O’Reilly D, Thomas PH, O’Hare P, Murphy S. 2014. Herpes simplex virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymer-ase II transcription elongation. PLoS One 9:e107654. https://doi.org/10.1371/journal.pone.0107654.
-
(2014)
PLoS One
, vol.9
, pp. 7654
-
-
Zaborowska, J.1
Baumli, S.2
Laitem, C.3
O’Reilly, D.4
Thomas, P.H.5
O’Hare, P.6
Murphy, S.7
-
63
-
-
84866702646
-
Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb
-
Guo L, Wu WJ, Liu LD, Wang LC, Zhang Y, Wu LQ, Guan Y, Li QH. 2012. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb. PLoS One 7:e45749. https://doi.org/10.1371/journal.pone.0045749.
-
(2012)
PLoS One
, vol.7
, pp. 45749
-
-
Guo, L.1
Wu, W.J.2
Liu, L.D.3
Wang, L.C.4
Zhang, Y.5
Wu, L.Q.6
Guan, Y.7
Li, Q.H.8
-
64
-
-
33745155714
-
Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS
-
Gierasch WW, Zimmerman DL, Ward SL, Vanheyningen TK, Romine JD, Leib DA. 2006. Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 135:197-206. https://doi.org/10.1016/j.jviromet.2006.03.014.
-
(2006)
J Virol Methods
, vol.135
, pp. 197-206
-
-
Gierasch, W.W.1
Zimmerman, D.L.2
Ward, S.L.3
Vanheyningen, T.K.4
Romine, J.D.5
Leib, D.A.6
-
65
-
-
33645053126
-
Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli
-
Tischer BK, von Einem J, Kaufer B, Osterrieder N. 2006. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191-197.
-
(2006)
Biotechniques
, vol.40
, pp. 191-197
-
-
Tischer, B.K.1
von Einem, J.2
Kaufer, B.3
Osterrieder, N.4
-
66
-
-
79955159135
-
En passant mutagenesis: A two step markerless red recombination system
-
Tischer BK, Smith GA, Osterrieder N. 2010. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol 634: 421-430. https://doi.org/10.1007/978-1-60761-652-8_30.
-
(2010)
Methods Mol Biol
, vol.634
, pp. 421-430
-
-
Tischer, B.K.1
Smith, G.A.2
Osterrieder, N.3
-
67
-
-
0031947861
-
Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins
-
Samaniego LA, Neiderhiser L, DeLuca NA. 1998. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72:3307-3320.
-
(1998)
J Virol
, vol.72
, pp. 3307-3320
-
-
Samaniego, L.A.1
Neiderhiser, L.2
DeLuca, N.A.3
-
68
-
-
0029793857
-
Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22
-
Wu N, Watkins SC, Schaffer PA, DeLuca NA. 1996. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J Virol 70:6358-6369.
-
(1996)
J Virol
, vol.70
, pp. 6358-6369
-
-
Wu, N.1
Watkins, S.C.2
Schaffer, P.A.3
DeLuca, N.A.4
-
69
-
-
0024529321
-
Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient
-
McCarthy AM, McMahan L, Schaffer PA. 1989. Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J Virol 63:18-27.
-
(1989)
J Virol
, vol.63
, pp. 18-27
-
-
McCarthy, A.M.1
McMahan, L.2
Schaffer, P.A.3
-
70
-
-
84901309807
-
Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells
-
Harkness JM, Kader M, DeLuca NA. 2014. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J Virol 88:6847-6861. https://doi.org/10.1128/JVI.00516-14.
-
(2014)
J Virol
, vol.88
, pp. 6847-6861
-
-
Harkness, J.M.1
Kader, M.2
DeLuca, N.A.3
|