메뉴 건너뛰기




Volumn 112, Issue 520, 2017, Pages 1516-1530

Nonparametric Bayes Modeling of Populations of Networks

Author keywords

Bayesian nonparametrics; Brain network; Latent space; Matrix factorization; Network valued random variable

Indexed keywords


EID: 85021967028     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2016.1219260     Document Type: Article
Times cited : (120)

References (45)
  • 2
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of Scaling in Random Networks
    • Barabási, A.-L., and Albert, R., (1999), “Emergence of Scaling in Random Networks,” Science, 286, 509–512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 3
    • 78651271665 scopus 로고    scopus 로고
    • Nonparametric Bayesian Density Estimation on Manifolds with Applications to Planar Shapes
    • Bhattacharya, A., and Dunson, D. B., (2010), “Nonparametric Bayesian Density Estimation on Manifolds with Applications to Planar Shapes,” Biometrika, 97, 851–865.
    • (2010) Biometrika , vol.97 , pp. 851-865
    • Bhattacharya, A.1    Dunson, D.B.2
  • 4
    • 79957827711 scopus 로고    scopus 로고
    • Sparse Bayesian Infinite Factor Models
    • Bhattacharya, A., and Dunson, D. B., (2011), “Sparse Bayesian Infinite Factor Models,” Biometrika, 98, 291–306.
    • (2011) Biometrika , vol.98 , pp. 291-306
    • Bhattacharya, A.1    Dunson, D.B.2
  • 5
    • 60549103853 scopus 로고    scopus 로고
    • Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems
    • Bullmore, E., and Sporns, O., (2009), “Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems,” Nature Reviews Neuroscience, 10, 186–198.
    • (2009) Nature Reviews Neuroscience , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 6
    • 85041041186 scopus 로고    scopus 로고
    • The Economy of Brain Network Organization
    • Bullmore, E., and Sporns, O. (2012), “The Economy of Brain Network Organization,” Nature Reviews Neuroscience, 77, 586–595.
    • (2012) Nature Reviews Neuroscience , vol.77 , pp. 586-595
    • Bullmore, E.1    Sporns, O.2
  • 7
    • 84884945843 scopus 로고    scopus 로고
    • The Polya-Gamma Gibbs Sampler for Bayesian Logistic Regression is Uniformly Ergodic
    • Choi, H. M., and Hobert, J. P., (2013), “The Polya-Gamma Gibbs Sampler for Bayesian Logistic Regression is Uniformly Ergodic,” Electronic Journal of Statistics, 7, 2054–2064.
    • (2013) Electronic Journal of Statistics , vol.7 , pp. 2054-2064
    • Choi, H.M.1    Hobert, J.P.2
  • 10
    • 70349773472 scopus 로고    scopus 로고
    • Nonparametric Bayes Modeling of Multivariate Categorical Data
    • Dunson, D. B., and Xing, C., (2009), “Nonparametric Bayes Modeling of Multivariate Categorical Data,” Journal of the American Statistical Association, 104, 1042–1051.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 1042-1051
    • Dunson, D.B.1    Xing, C.2
  • 15
    • 0347117630 scopus 로고    scopus 로고
    • Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity
    • Ghosal, S., (2000), “Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity,” Journal of Multivariate Analysis, 74, 49–68.
    • (2000) Journal of Multivariate Analysis , vol.74 , pp. 49-68
    • Ghosal, S.1
  • 16
    • 0038702584 scopus 로고    scopus 로고
    • Adaptive Bayesian Inference on the Mean of an Infinite-Dimensional Normal Distribution
    • Ghosal, S., and Belitser, E., (2003), “Adaptive Bayesian Inference on the Mean of an Infinite-Dimensional Normal Distribution,” The Annals of Statistics, 31, 536–559.
    • (2003) The Annals of Statistics , vol.31 , pp. 536-559
    • Ghosal, S.1    Belitser, E.2
  • 17
    • 72649086818 scopus 로고    scopus 로고
    • Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis
    • Ghosh, J., and Dunson, D. B., (2009), “Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis,” Journal of Computational and Graphical Statistics, 18, 306–320.
    • (2009) Journal of Computational and Graphical Statistics , vol.18 , pp. 306-320
    • Ghosh, J.1    Dunson, D.B.2
  • 23
    • 75849131336 scopus 로고    scopus 로고
    • Cambridge, MA: MIT Press Modeling Homophily and Stochastic Equivalence in Symmetric Relational Data
    • Platt J., Koller D., Singer Y., Roweis S., (eds),” in, eds., and
    • Hoff, P. D., (2008), “Modeling Homophily and Stochastic Equivalence in Symmetric Relational Data,” in Advances in Neural Information Processing Systems (Vol. 20), eds. J., Platt, D., Koller, Y., Singer, and S., Roweis, Cambridge, MA: MIT Press, pp. 657–664.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 657-664
    • Hoff, P.D.1
  • 26
    • 84866490426 scopus 로고    scopus 로고
    • Hemispherically-Unified Surface Maps of Human Cerebral Cortex: Reliability and Hemispheric Asymmetries
    • Kang, X., Herron, T. J., Cate, A. D., Yund, E. W., and Woods, D. L., (2012), “Hemispherically-Unified Surface Maps of Human Cerebral Cortex: Reliability and Hemispheric Asymmetries,” PLoS ONE, 7, e45582.
    • (2012) PLoS ONE , vol.7
    • Kang, X.1    Herron, T.J.2    Cate, A.D.3    Yund, E.W.4    Woods, D.L.5
  • 27
    • 68649096448 scopus 로고    scopus 로고
    • Tensor Decompositions and Applications
    • Kolda, T. G., and Bader, B. W., (2009), “Tensor Decompositions and Applications,” SIAM Review, 51, 455–500.
    • (2009) SIAM Review , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 28
    • 45349094498 scopus 로고    scopus 로고
    • Fitting Latent Cluster Models for Networks with latentnet
    • Krivitsky, P., and Handcock, M., (2008), “Fitting Latent Cluster Models for Networks with latentnet,” Journal of Statistical Software, 24, 1–23.
    • (2008) Journal of Statistical Software , vol.24 , pp. 1-23
    • Krivitsky, P.1    Handcock, M.2
  • 29
    • 67349200773 scopus 로고    scopus 로고
    • Representing Degree Distributions, Clustering, and Homophily in Social Networks with Latent Cluster Random Effects Models
    • Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D., (2009), “Representing Degree Distributions, Clustering, and Homophily in Social Networks with Latent Cluster Random Effects Models,” Social Networks, 31, 204–213.
    • (2009) Social Networks , vol.31 , pp. 204-213
    • Krivitsky, P.N.1    Handcock, M.S.2    Raftery, A.E.3    Hoff, P.D.4
  • 32
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian Mixture Model Based Clustering of Replicated Microarray Data
    • Medvedovic, M., Yeung, K. Y., and Bumgarner, R. E., (2004), “Bayesian Mixture Model Based Clustering of Replicated Microarray Data,” Bioinformatics, 20, 1222–1232.
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1    Yeung, K.Y.2    Bumgarner, R.E.3
  • 34
    • 84884917671 scopus 로고    scopus 로고
    • Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables
    • Polson, N. G., Scott, J. G., and Windle, J., (2013), “Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables,” Journal of the American Statistical Association, 108, 1339–1349.
    • (2013) Journal of the American Statistical Association , vol.108 , pp. 1339-1349
    • Polson, N.G.1    Scott, J.G.2    Windle, J.3
  • 37
    • 80054736950 scopus 로고    scopus 로고
    • Asymptotic Behaviour of the Posterior Distribution in Overfitted Mixture Models
    • Series B, and
    • Rousseau, J., and Mengersen, K., (2011), “Asymptotic Behaviour of the Posterior Distribution in Overfitted Mixture Models,” Journal of the Royal Statistical Society, Series B, 73, 689–710.
    • (2011) Journal of the Royal Statistical Society , vol.73 , pp. 689-710
    • Rousseau, J.1    Mengersen, K.2
  • 38
    • 77951207739 scopus 로고    scopus 로고
    • Modeling Graphs Using Dot Product Representations
    • Scheinerman, E. R., and Tucker, K., (2010), “Modeling Graphs Using Dot Product Representations,” Computational Statistics, 25, 1–16.
    • (2010) Computational Statistics , vol.25 , pp. 1-16
    • Scheinerman, E.R.1    Tucker, K.2
  • 39
    • 85032752062 scopus 로고    scopus 로고
    • Nonparametric Bayesian Modeling of Complex Networks: An Introduction
    • Schmidt, M. N., and Morup, M., (2013), “Nonparametric Bayesian Modeling of Complex Networks: An Introduction,” IEEE Signal Processing Magazine, 30, 110–128.
    • (2013) IEEE Signal Processing Magazine , vol.30 , pp. 110-128
    • Schmidt, M.N.1    Morup, M.2
  • 40
    • 84908609848 scopus 로고    scopus 로고
    • Modern Network Science of Neurological Disorders
    • Stam, C. J., (2014), “Modern Network Science of Neurological Disorders,” Nature Reviews Neuroscience, 15, 683–695.
    • (2014) Nature Reviews Neuroscience , vol.15 , pp. 683-695
    • Stam, C.J.1
  • 42
    • 84894490731 scopus 로고    scopus 로고
    • Universally Consistent Vertex Classification for Latent Positions Graphs
    • Tang, M., Sussman, D. L., and Priebe, C. E., (2013), “Universally Consistent Vertex Classification for Latent Positions Graphs,” The Annals of Statistics, 41, 1406–1430.
    • (2013) The Annals of Statistics , vol.41 , pp. 1406-1430
    • Tang, M.1    Sussman, D.L.2    Priebe, C.E.3
  • 43
    • 84875035320 scopus 로고    scopus 로고
    • Applications of Functional Data Analysis: A Systematic Review
    • Ullah, S., and Finch, C. F., (2013), “Applications of Functional Data Analysis: A Systematic Review,” BMC Medical Research Methodology, 13, 43.
    • (2013) BMC Medical Research Methodology , vol.13 , pp. 43
    • Ullah, S.1    Finch, C.F.2
  • 44
    • 50449109596 scopus 로고    scopus 로고
    • Object Oriented Data Analysis: Sets of Trees
    • Wang, H., and Marron, J. S., (2007), “Object Oriented Data Analysis: Sets of Trees,” The Annals of Statistics, 35, 1849–1873.
    • (2007) The Annals of Statistics , vol.35 , pp. 1849-1873
    • Wang, H.1    Marron, J.S.2
  • 45
    • 0032482432 scopus 로고    scopus 로고
    • Collective Dynamics of Small-World Networks
    • Watts, D. J., and Strogatz, S. H., (1998), “Collective Dynamics of Small-World Networks,” Nature, 393, 440–442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.