-
3
-
-
0000254565
-
Finite speed of propagation and continuity of the interface for thin viscous flows
-
F. Bernis. Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Diff. Eqns 1 (1996), 337-368.
-
(1996)
Adv. Diff. Eqns
, vol.1
, pp. 337-368
-
-
Bernis, F.1
-
5
-
-
0345148465
-
On a quasilinear degenerate system arising in semiconductor theory. II. Localization of vacuum solutions
-
J. I. Daz, G. Galiano and A. Jungel. On a quasilinear degenerate system arising in semiconductor theory. II. Localization of vacuum solutions. Nonlin. Analysis 36 (1999), 569-594.
-
(1999)
Nonlin. Analysis
, vol.36
, pp. 569-594
-
-
Daz, J.I.1
Galiano, G.2
Jungel, A.3
-
6
-
-
79960641120
-
Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media
-
J. Escher, Ph. Laurencot and B.-V. Matioc. Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Annales Inst. H. Poincare Analyse Non Lineaire 28 (2011), 583-598.
-
(2011)
Annales Inst. H. Poincare Analyse Non Lineaire
, vol.28
, pp. 583-598
-
-
Escher, J.1
Laurencot, Ph.2
Matioc, B.-V.3
-
7
-
-
79960623276
-
Modelling and analysis of the Muskat problem for thin fluid layers
-
J. Escher, A.-V. Matioc and B.-V. Matioc. Modelling and analysis of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. 14 (2012), 267-277.
-
(2012)
J. Math. Fluid Mech.
, vol.14
, pp. 267-277
-
-
Escher, J.1
Matioc, A.-V.2
Matioc, B.-V.3
-
8
-
-
84884790096
-
Advection-driven support shrinking in a chemotaxis model with degenerate mobility
-
J. Fischer. Advection-driven support shrinking in a chemotaxis model with degenerate mobility. SIAM J. Math. Analysis 45 (2013), 1585-1615.
-
(2013)
SIAM J. Math. Analysis
, vol.45
, pp. 1585-1615
-
-
Fischer, J.1
-
9
-
-
84907494167
-
Derivation of seawater intrusion models by formal asymptotics
-
M. Jazar and R. Monneau. Derivation of seawater intrusion models by formal asymptotics. SIAM J. Appl. Math. 74 (2014), 1152-1173.
-
(2014)
SIAM J. Appl. Math.
, vol.74
, pp. 1152-1173
-
-
Jazar, M.1
Monneau, R.2
-
10
-
-
84876434103
-
A gradient flow approach to a thin film approximation of the Muskat problem
-
Ph. Laurencot and B.-V. Matioc. A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. PDEs 47 (2013), 319-341.
-
(2013)
Calc. Var. PDEs
, vol.47
, pp. 319-341
-
-
Laurencot, Ph.1
Matioc, B.-V.2
-
11
-
-
84908572117
-
A thin film approximation of the Muskat problem with gravity and capillary forces
-
Ph. Laurencot and B.-V. Matioc. A thin film approximation of the Muskat problem with gravity and capillary forces. J. Math. Soc. Jpn 66 (2014), 1043-1071.
-
(2014)
J. Math. Soc. Jpn
, vol.66
, pp. 1043-1071
-
-
Laurencot, P.1
Matioc, B.-V.2
-
12
-
-
85026573722
-
Self-similarity in a Thin Film Muskat Problem
-
Available at
-
Ph. Laurencot and B.-V. Matioc. Self-similarity in a thin film Muskat problem. Preprint, 2014. (Available at https://arxiv.org/abs/1409.7329v1.)
-
(2014)
Preprint
-
-
Laurencot, Ph.1
Matioc, B.-V.2
-
13
-
-
0041033033
-
Two fluid systems in porous media: The encroachment of water into an oil sand
-
M. Muskat. Two fluid systems in porous media: The encroachment of water into an oil sand. Physics 5 (1934), 250-264.
-
(1934)
Physics
, vol.5
, pp. 250-264
-
-
Muskat, M.1
-
14
-
-
0001702448
-
An extended interpolation inequality
-
L. Nirenberg. An extended interpolation inequality. Annali Scuola Norm. Sup. Pisa 20 (1966), 733-737.
-
(1966)
Annali Scuola Norm. Sup. Pisa
, vol.20
, pp. 733-737
-
-
Nirenberg, L.1
-
15
-
-
0001245121
-
Estimates for the rate of propagation of perturbations in quasilinear degenerate higher-order parabolic equations in divergence form
-
A. E. Shishkov. Estimates for the rate of propagation of perturbations in quasilinear degenerate higher-order parabolic equations in divergence form. Ukran. Mat. Zh. 44 (1992), 1451-1456.
-
(1992)
Ukran. Mat. Zh.
, vol.44
, pp. 1451-1456
-
-
Shishkov, A.E.1
-
16
-
-
84894531156
-
The porous medium equation: Mathematical theory
-
Oxford: Clarendon Press
-
J. L. Vazquez. The porous medium equation: Mathematical theory. Oxford Mathematical Monographs (Oxford: Clarendon Press, 2007).
-
(2007)
Oxford Mathematical Monographs
-
-
Vazquez, J.L.1
|