-
1
-
-
31744435328
-
Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory
-
Agueh M.: Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differ. Equ. 10(3), 309-360 (2005).
-
(2005)
Adv. Differ. Equ.
, vol.10
, Issue.3
, pp. 309-360
-
-
Agueh, M.1
-
2
-
-
0001835099
-
Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems
-
of Teubner-Texte Mathematics Teubner, Stuttgart
-
Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), vol. 133 of Teubner-Texte Mathematics, pp. 9-126. Teubner, Stuttgart (1993).
-
(1993)
Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992)
, vol.133
, pp. 9-126
-
-
Amann, H.1
-
3
-
-
53649085750
-
A gradient flow approach to an evolution problem arising in superconductivity
-
Ambrosio L., Serfaty S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495-1539 (2008).
-
(2008)
Commun. Pure Appl. Math.
, vol.61
, Issue.11
, pp. 1495-1539
-
-
Ambrosio, L.1
Serfaty, S.2
-
4
-
-
31744443874
-
-
2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel
-
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008).
-
(2008)
Gradient Flows in Metric Spaces and in the Space of Probability Measures
-
-
Ambrosio, L.1
Gigli, N.2
Savaré, G.3
-
5
-
-
55549135711
-
Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model
-
Blanchet A., Calvez V., Carrillo J. A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46(2), 691-721 (2008).
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, Issue.2
, pp. 691-721
-
-
Blanchet, A.1
Calvez, V.2
Carrillo, J.A.3
-
6
-
-
2142661459
-
Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric
-
Carlen E. A., Gangbo W.: Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172(1), 21-64 (2004).
-
(2004)
Arch. Ration. Mech. Anal.
, vol.172
, Issue.1
, pp. 21-64
-
-
Carlen, E.A.1
Gangbo, W.2
-
8
-
-
32544445429
-
Contractions in the 2-Wasserstein length space and thermalization of granular media
-
Carrillo J. A., McCann R. J., Villani C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179(2), 217-263 (2006).
-
(2006)
Arch. Ration. Mech. Anal.
, vol.179
, Issue.2
, pp. 217-263
-
-
Carrillo, J.A.1
McCann, R.J.2
Villani, C.3
-
9
-
-
79960641120
-
Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Ann. Inst. H. Poincaré Anal
-
Escher, J., Laurençot, Ph., Matioc, B.-V.: Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(4), 583-598 (2011).
-
(2011)
Non Linéaire
, vol.28
, Issue.4
, pp. 583-598
-
-
Escher, J.1
Laurençot, P.2
Matioc, B.-V.3
-
10
-
-
79960623276
-
Modelling and analysis of the Muskat problem for thin fluid layers
-
doi: 10. 1007/s00021-011-0053-2
-
Escher, J., Matioc, A.-V., Matioc, B.-V.: Modelling and analysis of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. (2011). doi: 10. 1007/s00021-011-0053-2.
-
(2011)
J. Math. Fluid Mech.
-
-
Escher, J.1
Matioc, A.-V.2
Matioc, B.-V.3
-
12
-
-
0032343437
-
The variational formulation of the Fokker-Planck equation
-
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1-17 (1998).
-
(1998)
SIAM J. Math. Anal.
, vol.29
, Issue.1
, pp. 1-17
-
-
Jordan, R.1
Kinderlehrer, D.2
Otto, F.3
-
14
-
-
74949092030
-
A family of nonlinear fourth order equations of gradient flow type
-
Matthes D., McCann R. J., Savaré G.: A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34(10-12), 1352-1397 (2009).
-
(2009)
Commun. Partial Differ. Equ.
, vol.34
, Issue.10-12
, pp. 1352-1397
-
-
Matthes, D.1
McCann, R.J.2
Savaré, G.3
-
15
-
-
0032368806
-
Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory
-
Otto F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141(1), 63-103 (1998).
-
(1998)
Arch. Ration. Mech. Anal.
, vol.141
, Issue.1
, pp. 63-103
-
-
Otto, F.1
-
16
-
-
0001560970
-
The geometry of dissipative evolution equations: the porous medium equation
-
Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1-2), 101-174 (2001).
-
(2001)
Commun. Partial Differ. Equ.
, vol.26
, Issue.1-2
, pp. 101-174
-
-
Otto, F.1
|