메뉴 건너뛰기




Volumn 60, Issue 4, 2017, Pages 324-334

In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation

Author keywords

chemical transformation; electrocatalysis; nanosheet array; oxygen evolution reaction; Raman spectroscopy

Indexed keywords

AMORPHOUS MATERIALS; CATALYST ACTIVITY; ELECTROCATALYSIS; ELECTROCATALYSTS; IRON ALLOYS; IRON COMPOUNDS; NANOSHEETS; NICKEL; NICKEL ALLOYS; RAMAN SPECTROSCOPY;

EID: 85021700059     PISSN: 20958226     EISSN: 21994501     Source Type: Journal    
DOI: 10.1007/s40843-017-9017-6     Document Type: Article
Times cited : (108)

References (60)
  • 1
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: chemical challenges in solar energy utilization
    • Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA, 2006, 103: 15729–15735
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 2
    • 84907983567 scopus 로고    scopus 로고
    • Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
    • Faber MS, Jin S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energ Environ Sci, 2014, 7: 3519–3542
    • (2014) Energ Environ Sci , vol.7 , pp. 3519-3542
    • Faber, M.S.1    Jin, S.2
  • 3
    • 84999040437 scopus 로고    scopus 로고
    • Earth-abundant heterogeneous water oxidation catalysts
    • Hunter BM, Gray HB, Müller AM. Earth-abundant heterogeneous water oxidation catalysts. Chem Rev, 2016, 116: 14120–14136
    • (2016) Chem Rev , vol.116 , pp. 14120-14136
    • Hunter, B.M.1    Gray, H.M.A.M.2
  • 4
    • 84961619661 scopus 로고    scopus 로고
    • Homogeneously dispersed multimetal oxygen-evolving catalysts
    • Zhang B, Zheng X, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352: 333–337
    • (2016) Science , vol.352 , pp. 333-337
    • Zhang, B.1    Zheng, X.2    Voznyy, O.3
  • 5
    • 85011081780 scopus 로고    scopus 로고
    • Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatomdoped graphene
    • Jiao Y, Zheng Y, Davey K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatomdoped graphene. Nat Energ, 2016, 1: 16130
    • (2016) Nat Energ , vol.1 , pp. 16130
    • Jiao, Y.1    Zheng, Y.2    Davey, K.3
  • 6
    • 85018309617 scopus 로고    scopus 로고
    • Electrocatalysts for hydrogen oxidation and evolution reactions
    • Lu S, Zhuang Z. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci China Mater, 2016, 59: 217–238
    • (2016) Sci China Mater , vol.59 , pp. 217-238
    • Lu, S.1    Zhuang, Z.2
  • 8
    • 84977931696 scopus 로고    scopus 로고
    • 4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction
    • 4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed, 2016, 55: 5277–5281
    • (2016) Angew Chem Int Ed , vol.55 , pp. 5277-5281
    • Xu, L.1    Jiang, Q.2    Xiao, Z.3
  • 9
    • 84960187730 scopus 로고    scopus 로고
    • A metal–organic framework-derived bifunctional oxygen electrocatalyst
    • Xia BY, Yan Y, Li N, et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energ, 2016, 1: 15006
    • (2016) Nat Energ , vol.1 , pp. 15006
    • Xia, B.Y.1    Yan, Y.2    Li, N.3
  • 10
    • 85006470289 scopus 로고    scopus 로고
    • In situ electrochemically derived nanoporous oxides from transition metal dichalcogenides for active oxygen evolution catalysts
    • Chen W, Liu Y, Li Y, et al. In situ electrochemically derived nanoporous oxides from transition metal dichalcogenides for active oxygen evolution catalysts. Nano Lett, 2016, 16: 7588–7596
    • (2016) Nano Lett , vol.16 , pp. 7588-7596
    • Chen, W.1    Liu, Y.2    Li, Y.3
  • 11
    • 84954169893 scopus 로고    scopus 로고
    • 4 nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting
    • 4 nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting. Nanoscale, 2016, 8: 1390–1400
    • (2016) Nanoscale , vol.8 , pp. 1390-1400
    • Yin, J.1    Zhou, P.2    An, L.3
  • 12
    • 84941652661 scopus 로고    scopus 로고
    • 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiencywater oxidation
    • Zeng M, Wang H, Zhao C, et al. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiencywater oxidation. Sci Bull, 2015, 60: 1426–1433
    • (2015) Sci Bull , vol.60 , pp. 1426-1433
    • Zeng, M.1    Wang, H.2    Zhao, C.3
  • 13
    • 85017073501 scopus 로고    scopus 로고
    • Gold-supported cerium-doped NiOx catalysts for water oxidation
    • Ng JWD, García- Melchor M, Bajdich M, et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energ, 2016, 1: 16053
    • (2016) Nat Energ , vol.1 , pp. 16053
    • Ng, J.G.1    Melchor, M.2    Bajdich, M.3
  • 14
    • 84925002937 scopus 로고    scopus 로고
    • Electrodeposition of hierarchically structured threedimensional nickel–iron electrodes for efficient oxygen evolution at high current densities
    • Lu X, Zhao C. Electrodeposition of hierarchically structured threedimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun, 2015, 6: 6616
    • (2015) Nat Commun , vol.6 , pp. 6616
    • Lu, X.1    Zhao, C.2
  • 15
    • 84981288407 scopus 로고    scopus 로고
    • A nickel iron diselenide-derived efficient oxygen- evolution catalyst
    • Xu X, Song F, Hu X. A nickel iron diselenide-derived efficient oxygen- evolution catalyst. Nat Commun, 2016, 7: 12324
    • (2016) Nat Commun , vol.7 , pp. 12324
    • Xu, X.1    Song, F.2    Hu, X.3
  • 16
    • 84975321850 scopus 로고    scopus 로고
    • Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation
    • Fan K, Chen H, Ji Y, et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun, 2016, 7: 11981
    • (2016) Nat Commun , vol.7 , pp. 11981
    • Fan, K.1    Chen, H.2    Ji, Y.3
  • 17
    • 84973640332 scopus 로고    scopus 로고
    • 2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction
    • 2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv Mater, 2016, 28: 4698–4703
    • (2016) Adv Mater , vol.28 , pp. 4698-4703
    • Feng, J.X.1    Ye, S.H.2    Xu, H.3
  • 18
    • 85015344046 scopus 로고    scopus 로고
    • 4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction
    • 4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction. Sci China Mater, 2017, 60: 119–130
    • (2017) Sci China Mater , vol.60 , pp. 119-130
    • Chen, Z.1    Zhao, H.2    Zhang, J.3
  • 19
    • 84983094427 scopus 로고    scopus 로고
    • Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction
    • Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed, 2015, 54: 14710–14714
    • (2015) Angew Chem Int Ed , vol.54 , pp. 14710-14714
    • Chen, P.1    Xu, K.2    Fang, Z.3
  • 20
    • 84971372051 scopus 로고    scopus 로고
    • 2 frommonolayer NiTi-LDHprecursors: an active water oxidation electrocatalyst
    • 2 frommonolayer NiTi-LDHprecursors: an active water oxidation electrocatalyst. J Am Chem Soc, 2016, 138: 6517–6524
    • (2016) J Am Chem Soc , vol.138 , pp. 6517-6524
    • Zhao, Y.1    Jia, X.2    Chen, G.3
  • 21
    • 84959479402 scopus 로고    scopus 로고
    • A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly
    • Wu J, Ren Z, Du S, et al. A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res, 2016, 9: 713–725
    • (2016) Nano Res , vol.9 , pp. 713-725
    • Wu, J.1    Ren, Z.2    Du, S.3
  • 22
    • 84928975275 scopus 로고    scopus 로고
    • 4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting
    • 4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem Commun, 2015, 51: 8066–8069
    • (2015) Chem Commun , vol.51 , pp. 8066-8069
    • Du, S.1    Ren, Z.2    Zhang, J.3
  • 23
    • 84877649079 scopus 로고    scopus 로고
    • Chiral iron catalysts for asymmetric synthesis
    • Gopalaiah K. Chiral iron catalysts for asymmetric synthesis. Chem Rev, 2013, 113: 3248–3296
    • (2013) Chem Rev , vol.113 , pp. 3248-3296
    • Gopalaiah, K.1
  • 24
    • 84896936771 scopus 로고    scopus 로고
    • Challenges to achievement of metal sustainability in our high-tech society
    • Izatt RM, Izatt SR, Bruening RL, et al. Challenges to achievement of metal sustainability in our high-tech society. Chem Soc Rev, 2014, 43: 2451–2475
    • (2014) Chem Soc Rev , vol.43 , pp. 2451-2475
    • Izatt, R.M.1    Izatt, S.R.2    Bruening, R.L.3
  • 25
    • 84959538709 scopus 로고    scopus 로고
    • 3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst
    • 3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv Energ Mater, 2016, 6: 1502585
    • (2016) Adv Energ Mater , vol.6 , pp. 1502585
    • Jia, X.1    Zhao, Y.2    Chen, G.3
  • 26
    • 84957812714 scopus 로고    scopus 로고
    • Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction
    • Fan H, Huang X, Shang L, et al. Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew Chem Int Ed, 2016, 55: 2167–2170
    • (2016) Angew Chem Int Ed , vol.55 , pp. 2167-2170
    • Fan, H.1    Huang, X.2    Shang, L.3
  • 27
    • 84947433310 scopus 로고    scopus 로고
    • 2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting
    • 2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc, 2015, 137: 14023–14026
    • (2015) J Am Chem Soc , vol.137 , pp. 14023-14026
    • Feng, L.Y.G.1    Wu, Y.2
  • 28
    • 84929600622 scopus 로고    scopus 로고
    • Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation
    • Ni B, Wang X. Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chem Sci, 2015, 6: 3572–3576
    • (2015) Chem Sci , vol.6 , pp. 3572-3576
    • Ni, B.1    Wang, X.2
  • 29
    • 84878901341 scopus 로고    scopus 로고
    • An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation
    • Gong M, Li Y, Wang H, et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc, 2013, 135: 8452–8455
    • (2013) J Am Chem Soc , vol.135 , pp. 8452-8455
    • Gong, M.1    Li, Y.2    Wang, H.3
  • 30
    • 84937023988 scopus 로고    scopus 로고
    • Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis
    • Qian L, Lu Z, Xu T, et al. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv Energ Mater, 2015, 5: 1500245
    • (2015) Adv Energ Mater , vol.5 , pp. 1500245
    • Qian, L.1    Lu, Z.2    Xu, T.3
  • 31
    • 84944079388 scopus 로고    scopus 로고
    • Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
    • Li Z, Shao M, An H, et al. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem Sci, 2015, 6: 6624–6631
    • (2015) Chem Sci , vol.6 , pp. 6624-6631
    • Li, Z.1    Shao, M.2    An, H.3
  • 32
    • 84968750690 scopus 로고    scopus 로고
    • Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts
    • Görlin M, Chernev P, Ferreira de Araújo J, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J Am Chem Soc, 2016, 138: 5603–5614
    • (2016) J Am Chem Soc , vol.138 , pp. 5603-5614
    • Görlin, M.1    Chernev, P.2    Ferreira de Araújo, J.3
  • 33
    • 84921927359 scopus 로고    scopus 로고
    • Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
    • Friebel D, Louie MW, Bajdich M, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc, 2015, 137: 1305–1313
    • (2015) J Am Chem Soc , vol.137 , pp. 1305-1313
    • Friebel, D.1    Louie, M.W.2    Bajdich, M.3
  • 34
    • 84947998868 scopus 로고    scopus 로고
    • Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles
    • Burke MS, Enman LJ, Batchellor AS, et al. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater, 2015, 27: 7549–7558
    • (2015) Chem Mater , vol.27 , pp. 7549-7558
    • Burke, M.S.1    Enman, L.J.2    Batchellor, A.S.3
  • 35
    • 84883088089 scopus 로고    scopus 로고
    • An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen
    • Louie MW, Bell AT. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc, 2013, 135: 12329–12337
    • (2013) J Am Chem Soc , vol.135 , pp. 12329-12337
    • Louie, M.W.1    Bell, A.T.2
  • 36
    • 84900346581 scopus 로고    scopus 로고
    • Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation
    • Trotochaud L, Young SL, Ranney JK, et al. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc, 2014, 136: 6744–6753
    • (2014) J Am Chem Soc , vol.136 , pp. 6744-6753
    • Trotochaud, L.1    Young, S.L.2    Ranney, J.K.3
  • 37
    • 85027957423 scopus 로고    scopus 로고
    • Under-water superaerophobic pineshaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution
    • Li Y, Zhang H, Xu T, et al. Under-water superaerophobic pineshaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv Funct Mater, 2015, 25: 1737–1744
    • (2015) Adv Funct Mater , vol.25 , pp. 1737-1744
    • Li, Y.1    Zhang, H.2    Xu, T.3
  • 38
    • 84961117671 scopus 로고    scopus 로고
    • Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
    • Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev, 2016, 45: 1529–1541
    • (2016) Chem Soc Rev , vol.45 , pp. 1529-1541
    • Shi, Y.1    Zhang, B.2
  • 39
    • 84885386469 scopus 로고    scopus 로고
    • 3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes
    • 3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energ, 2013, 2: 754–763
    • (2013) Nano Energ , vol.2 , pp. 754-763
    • Tian, W.1    Wang, X.Z.2
  • 40
    • 84870488447 scopus 로고    scopus 로고
    • 3) nanoparticles and their photocatalytic activity
    • 3) nanoparticles and their photocatalytic activity. Adv Powder Tech, 2013, 24: 160–167
    • (2013) Adv Powder Tech , vol.24 , pp. 160-167
    • Ahmmad, B.1    Leonard, K.S.I.2
  • 41
    • 51449090120 scopus 로고    scopus 로고
    • Synthesis and characterization of stable Co and Cd doped nickel hydroxide nanoparticles for electrochemical applications
    • Vidotti M, Salvador RP, Córdoba de Torresi SI. Synthesis and characterization of stable Co and Cd doped nickel hydroxide nanoparticles for electrochemical applications. Ultrason Sonochem, 2009, 16: 35–40
    • (2009) Ultrason Sonochem , vol.16 , pp. 35-40
    • Vidotti, M.1    Salvador, R.P.2    Córdoba de Torresi, S.I.3
  • 43
    • 84964474241 scopus 로고    scopus 로고
    • In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction
    • Li X, Han GQ, Liu YR, et al. In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta, 2016, 205: 77–84
    • (2016) Electrochim Acta , vol.205 , pp. 77-84
    • Li, X.1    Han, G.Q.2    Liu, Y.R.3
  • 44
    • 34548633414 scopus 로고    scopus 로고
    • 3 nanorings prepared by a microwave- assisted hydrothermal process and their sensing properties
    • 3 nanorings prepared by a microwave- assisted hydrothermal process and their sensing properties. Adv Mater, 2007, 19: 2324–2329
    • (2007) Adv Mater , vol.19 , pp. 2324-2329
    • Hu, X.1    Yu, J.C.2    Gong, J.3
  • 45
    • 84882331328 scopus 로고    scopus 로고
    • Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen
    • Xu YF, Gao MR, Zheng YR, et al. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew Chem Int Ed, 2013, 52: 8546–8550
    • (2013) Angew Chem Int Ed , vol.52 , pp. 8546-8550
    • Xu, Y.F.1    Gao, M.R.2    Zheng, Y.R.3
  • 47
    • 0034699449 scopus 로고    scopus 로고
    • Direct electrochemical reduction of titaniumdioxide to titaniuminmolten calciumchloride
    • Fray DJ, Chen GZ, Farthing TW. Direct electrochemical reduction of titaniumdioxide to titaniuminmolten calciumchloride. Nature, 2000, 407: 361–364
    • (2000) Nature , vol.407 , pp. 361-364
    • Fray, D.J.1    Chen, G.Z.2    Farthing, T.W.3
  • 48
    • 79954424769 scopus 로고    scopus 로고
    • 4 nanoparticles, bulk and films: effect of laser power
    • 4 nanoparticles, bulk and films: effect of laser power. J Raman Spectrosc, 2011, 42: 1087–1094
    • (2011) J Raman Spectrosc , vol.42 , pp. 1087-1094
    • Ahlawat, A.1    Sathe, V.G.2
  • 49
    • 0021510782 scopus 로고
    • In situ laser raman spectroscopic study of anodic corrosion films on nickel and cobalt
    • Melendres CA. In situ laser raman spectroscopic study of anodic corrosion films on nickel and cobalt. J Electrochem Soc, 1984, 131: 2239–2243
    • (1984) J Electrochem Soc , vol.131 , pp. 2239-2243
    • Melendres, C.A.1
  • 50
    • 84933073729 scopus 로고    scopus 로고
    • In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced raman spectroscopy
    • Li CY, Dong JC, Jin X, et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced raman spectroscopy. J Am Chem Soc, 2015, 137: 7648–7651
    • (2015) J Am Chem Soc , vol.137 , pp. 7648-7651
    • Li, C.Y.1    Dong, J.C.2    Jin, X.3
  • 51
    • 84860135278 scopus 로고    scopus 로고
    • In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen
    • Yeo BS, Bell AT. In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C, 2012, 116: 8394–8400
    • (2012) J Phys Chem C , vol.116 , pp. 8394-8400
    • Yeo, B.S.1    Bell, A.T.2
  • 52
    • 84864592302 scopus 로고    scopus 로고
    • Spectroscopic characterization ofmixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes
    • Landon J, Demeter E, Inoglu N, et al. Spectroscopic characterization ofmixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal, 2012, 2: 1793–1801
    • (2012) ACS Catal , vol.2 , pp. 1793-1801
    • Landon, J.1    Demeter, E.2    Inoglu, N.3
  • 54
    • 84904506869 scopus 로고    scopus 로고
    • A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction
    • Long X, Li J, Xiao S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew Chem Int Ed, 2014, 53: 7584–7588
    • (2014) Angew Chem Int Ed , vol.53 , pp. 7584-7588
    • Long, X.1    Li, J.2    Xiao, S.3
  • 55
    • 84934954844 scopus 로고    scopus 로고
    • Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
    • Wang H, LeeHW, Deng Y, et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun, 2015, 6: 7261
    • (2015) Nat Commun , vol.6 , pp. 7261
    • Wang, H.L.1    Deng, Y.2
  • 56
    • 84978971035 scopus 로고    scopus 로고
    • Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction
    • Ping J, Wang Y, Lu Q, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv Mater, 2016, 28: 7640–7645
    • (2016) Adv Mater , vol.28 , pp. 7640-7645
    • Ping, J.1    Wang, Y.2    Lu, Q.3
  • 57
    • 84940447034 scopus 로고    scopus 로고
    • Synergistic effect between metal-nitrogen- carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance
    • Wang J, Li K, Zhong H, et al. Synergistic effect between metal-nitrogen- carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew Chem Int Ed, 2015, 54: 10530–10534
    • (2015) Angew Chem Int Ed , vol.54 , pp. 10530-10534
    • Wang, J.1    Li, K.2    Zhong, H.3
  • 58
    • 84971669867 scopus 로고    scopus 로고
    • General self-template synthesis of transition-metal oxide and chalcogenidemesoporous nanotubes with enhanced electrochemical performances
    • Wang H, Zhuo S, Liang Y, et al. General self-template synthesis of transition-metal oxide and chalcogenidemesoporous nanotubes with enhanced electrochemical performances. Angew Chem Int Ed, 2016, 55: 9055–9059
    • (2016) Angew Chem Int Ed , vol.55 , pp. 9055-9059
    • Wang, H.1    Zhuo, S.2    Liang, Y.3
  • 59
    • 84995932370 scopus 로고    scopus 로고
    • Single-particle mapping of nonequilibrium nanocrystal transformations
    • Ye X, Jones MR, Frechette LB, et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science, 2016, 354: 874–877
    • (2016) Science , vol.354 , pp. 874-877
    • Ye, X.1    Jones, M.R.2    Frechette, L.B.3
  • 60
    • 85003534361 scopus 로고    scopus 로고
    • 2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media
    • 2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci, 2016, 3: 1500426
    • (2016) Adv Sci , vol.3 , pp. 1500426
    • Li, K.1    Zhang, J.2    Wu, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.