-
1
-
-
33750458683
-
Powering the planet: chemical challenges in solar energy utilization
-
Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA, 2006, 103: 15729–15735
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
2
-
-
84907983567
-
Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
-
Faber MS, Jin S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energ Environ Sci, 2014, 7: 3519–3542
-
(2014)
Energ Environ Sci
, vol.7
, pp. 3519-3542
-
-
Faber, M.S.1
Jin, S.2
-
3
-
-
84999040437
-
Earth-abundant heterogeneous water oxidation catalysts
-
Hunter BM, Gray HB, Müller AM. Earth-abundant heterogeneous water oxidation catalysts. Chem Rev, 2016, 116: 14120–14136
-
(2016)
Chem Rev
, vol.116
, pp. 14120-14136
-
-
Hunter, B.M.1
Gray, H.M.A.M.2
-
4
-
-
84961619661
-
Homogeneously dispersed multimetal oxygen-evolving catalysts
-
Zhang B, Zheng X, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352: 333–337
-
(2016)
Science
, vol.352
, pp. 333-337
-
-
Zhang, B.1
Zheng, X.2
Voznyy, O.3
-
5
-
-
85011081780
-
Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatomdoped graphene
-
Jiao Y, Zheng Y, Davey K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatomdoped graphene. Nat Energ, 2016, 1: 16130
-
(2016)
Nat Energ
, vol.1
, pp. 16130
-
-
Jiao, Y.1
Zheng, Y.2
Davey, K.3
-
6
-
-
85018309617
-
Electrocatalysts for hydrogen oxidation and evolution reactions
-
Lu S, Zhuang Z. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci China Mater, 2016, 59: 217–238
-
(2016)
Sci China Mater
, vol.59
, pp. 217-238
-
-
Lu, S.1
Zhuang, Z.2
-
8
-
-
84977931696
-
4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction
-
4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed, 2016, 55: 5277–5281
-
(2016)
Angew Chem Int Ed
, vol.55
, pp. 5277-5281
-
-
Xu, L.1
Jiang, Q.2
Xiao, Z.3
-
9
-
-
84960187730
-
A metal–organic framework-derived bifunctional oxygen electrocatalyst
-
Xia BY, Yan Y, Li N, et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energ, 2016, 1: 15006
-
(2016)
Nat Energ
, vol.1
, pp. 15006
-
-
Xia, B.Y.1
Yan, Y.2
Li, N.3
-
10
-
-
85006470289
-
In situ electrochemically derived nanoporous oxides from transition metal dichalcogenides for active oxygen evolution catalysts
-
Chen W, Liu Y, Li Y, et al. In situ electrochemically derived nanoporous oxides from transition metal dichalcogenides for active oxygen evolution catalysts. Nano Lett, 2016, 16: 7588–7596
-
(2016)
Nano Lett
, vol.16
, pp. 7588-7596
-
-
Chen, W.1
Liu, Y.2
Li, Y.3
-
11
-
-
84954169893
-
4 nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting
-
4 nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting. Nanoscale, 2016, 8: 1390–1400
-
(2016)
Nanoscale
, vol.8
, pp. 1390-1400
-
-
Yin, J.1
Zhou, P.2
An, L.3
-
12
-
-
84941652661
-
3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiencywater oxidation
-
Zeng M, Wang H, Zhao C, et al. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiencywater oxidation. Sci Bull, 2015, 60: 1426–1433
-
(2015)
Sci Bull
, vol.60
, pp. 1426-1433
-
-
Zeng, M.1
Wang, H.2
Zhao, C.3
-
13
-
-
85017073501
-
Gold-supported cerium-doped NiOx catalysts for water oxidation
-
Ng JWD, García- Melchor M, Bajdich M, et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energ, 2016, 1: 16053
-
(2016)
Nat Energ
, vol.1
, pp. 16053
-
-
Ng, J.G.1
Melchor, M.2
Bajdich, M.3
-
14
-
-
84925002937
-
Electrodeposition of hierarchically structured threedimensional nickel–iron electrodes for efficient oxygen evolution at high current densities
-
Lu X, Zhao C. Electrodeposition of hierarchically structured threedimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun, 2015, 6: 6616
-
(2015)
Nat Commun
, vol.6
, pp. 6616
-
-
Lu, X.1
Zhao, C.2
-
15
-
-
84981288407
-
A nickel iron diselenide-derived efficient oxygen- evolution catalyst
-
Xu X, Song F, Hu X. A nickel iron diselenide-derived efficient oxygen- evolution catalyst. Nat Commun, 2016, 7: 12324
-
(2016)
Nat Commun
, vol.7
, pp. 12324
-
-
Xu, X.1
Song, F.2
Hu, X.3
-
16
-
-
84975321850
-
Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation
-
Fan K, Chen H, Ji Y, et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun, 2016, 7: 11981
-
(2016)
Nat Commun
, vol.7
, pp. 11981
-
-
Fan, K.1
Chen, H.2
Ji, Y.3
-
17
-
-
84973640332
-
2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction
-
2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv Mater, 2016, 28: 4698–4703
-
(2016)
Adv Mater
, vol.28
, pp. 4698-4703
-
-
Feng, J.X.1
Ye, S.H.2
Xu, H.3
-
18
-
-
85015344046
-
4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction
-
4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction. Sci China Mater, 2017, 60: 119–130
-
(2017)
Sci China Mater
, vol.60
, pp. 119-130
-
-
Chen, Z.1
Zhao, H.2
Zhang, J.3
-
19
-
-
84983094427
-
Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction
-
Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed, 2015, 54: 14710–14714
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 14710-14714
-
-
Chen, P.1
Xu, K.2
Fang, Z.3
-
20
-
-
84971372051
-
2 frommonolayer NiTi-LDHprecursors: an active water oxidation electrocatalyst
-
2 frommonolayer NiTi-LDHprecursors: an active water oxidation electrocatalyst. J Am Chem Soc, 2016, 138: 6517–6524
-
(2016)
J Am Chem Soc
, vol.138
, pp. 6517-6524
-
-
Zhao, Y.1
Jia, X.2
Chen, G.3
-
21
-
-
84959479402
-
A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly
-
Wu J, Ren Z, Du S, et al. A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res, 2016, 9: 713–725
-
(2016)
Nano Res
, vol.9
, pp. 713-725
-
-
Wu, J.1
Ren, Z.2
Du, S.3
-
22
-
-
84928975275
-
4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting
-
4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem Commun, 2015, 51: 8066–8069
-
(2015)
Chem Commun
, vol.51
, pp. 8066-8069
-
-
Du, S.1
Ren, Z.2
Zhang, J.3
-
23
-
-
84877649079
-
Chiral iron catalysts for asymmetric synthesis
-
Gopalaiah K. Chiral iron catalysts for asymmetric synthesis. Chem Rev, 2013, 113: 3248–3296
-
(2013)
Chem Rev
, vol.113
, pp. 3248-3296
-
-
Gopalaiah, K.1
-
24
-
-
84896936771
-
Challenges to achievement of metal sustainability in our high-tech society
-
Izatt RM, Izatt SR, Bruening RL, et al. Challenges to achievement of metal sustainability in our high-tech society. Chem Soc Rev, 2014, 43: 2451–2475
-
(2014)
Chem Soc Rev
, vol.43
, pp. 2451-2475
-
-
Izatt, R.M.1
Izatt, S.R.2
Bruening, R.L.3
-
25
-
-
84959538709
-
3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst
-
3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv Energ Mater, 2016, 6: 1502585
-
(2016)
Adv Energ Mater
, vol.6
, pp. 1502585
-
-
Jia, X.1
Zhao, Y.2
Chen, G.3
-
26
-
-
84957812714
-
Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction
-
Fan H, Huang X, Shang L, et al. Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew Chem Int Ed, 2016, 55: 2167–2170
-
(2016)
Angew Chem Int Ed
, vol.55
, pp. 2167-2170
-
-
Fan, H.1
Huang, X.2
Shang, L.3
-
27
-
-
84947433310
-
2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting
-
2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc, 2015, 137: 14023–14026
-
(2015)
J Am Chem Soc
, vol.137
, pp. 14023-14026
-
-
Feng, L.Y.G.1
Wu, Y.2
-
28
-
-
84929600622
-
Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation
-
Ni B, Wang X. Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chem Sci, 2015, 6: 3572–3576
-
(2015)
Chem Sci
, vol.6
, pp. 3572-3576
-
-
Ni, B.1
Wang, X.2
-
29
-
-
84878901341
-
An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation
-
Gong M, Li Y, Wang H, et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc, 2013, 135: 8452–8455
-
(2013)
J Am Chem Soc
, vol.135
, pp. 8452-8455
-
-
Gong, M.1
Li, Y.2
Wang, H.3
-
30
-
-
84937023988
-
Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis
-
Qian L, Lu Z, Xu T, et al. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv Energ Mater, 2015, 5: 1500245
-
(2015)
Adv Energ Mater
, vol.5
, pp. 1500245
-
-
Qian, L.1
Lu, Z.2
Xu, T.3
-
31
-
-
84944079388
-
Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
-
Li Z, Shao M, An H, et al. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem Sci, 2015, 6: 6624–6631
-
(2015)
Chem Sci
, vol.6
, pp. 6624-6631
-
-
Li, Z.1
Shao, M.2
An, H.3
-
32
-
-
84968750690
-
Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts
-
Görlin M, Chernev P, Ferreira de Araújo J, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J Am Chem Soc, 2016, 138: 5603–5614
-
(2016)
J Am Chem Soc
, vol.138
, pp. 5603-5614
-
-
Görlin, M.1
Chernev, P.2
Ferreira de Araújo, J.3
-
33
-
-
84921927359
-
Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
-
Friebel D, Louie MW, Bajdich M, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc, 2015, 137: 1305–1313
-
(2015)
J Am Chem Soc
, vol.137
, pp. 1305-1313
-
-
Friebel, D.1
Louie, M.W.2
Bajdich, M.3
-
34
-
-
84947998868
-
Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles
-
Burke MS, Enman LJ, Batchellor AS, et al. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater, 2015, 27: 7549–7558
-
(2015)
Chem Mater
, vol.27
, pp. 7549-7558
-
-
Burke, M.S.1
Enman, L.J.2
Batchellor, A.S.3
-
35
-
-
84883088089
-
An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen
-
Louie MW, Bell AT. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc, 2013, 135: 12329–12337
-
(2013)
J Am Chem Soc
, vol.135
, pp. 12329-12337
-
-
Louie, M.W.1
Bell, A.T.2
-
36
-
-
84900346581
-
Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation
-
Trotochaud L, Young SL, Ranney JK, et al. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc, 2014, 136: 6744–6753
-
(2014)
J Am Chem Soc
, vol.136
, pp. 6744-6753
-
-
Trotochaud, L.1
Young, S.L.2
Ranney, J.K.3
-
37
-
-
85027957423
-
Under-water superaerophobic pineshaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution
-
Li Y, Zhang H, Xu T, et al. Under-water superaerophobic pineshaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv Funct Mater, 2015, 25: 1737–1744
-
(2015)
Adv Funct Mater
, vol.25
, pp. 1737-1744
-
-
Li, Y.1
Zhang, H.2
Xu, T.3
-
38
-
-
84961117671
-
Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
-
Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev, 2016, 45: 1529–1541
-
(2016)
Chem Soc Rev
, vol.45
, pp. 1529-1541
-
-
Shi, Y.1
Zhang, B.2
-
39
-
-
84885386469
-
3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes
-
3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energ, 2013, 2: 754–763
-
(2013)
Nano Energ
, vol.2
, pp. 754-763
-
-
Tian, W.1
Wang, X.Z.2
-
40
-
-
84870488447
-
3) nanoparticles and their photocatalytic activity
-
3) nanoparticles and their photocatalytic activity. Adv Powder Tech, 2013, 24: 160–167
-
(2013)
Adv Powder Tech
, vol.24
, pp. 160-167
-
-
Ahmmad, B.1
Leonard, K.S.I.2
-
41
-
-
51449090120
-
Synthesis and characterization of stable Co and Cd doped nickel hydroxide nanoparticles for electrochemical applications
-
Vidotti M, Salvador RP, Córdoba de Torresi SI. Synthesis and characterization of stable Co and Cd doped nickel hydroxide nanoparticles for electrochemical applications. Ultrason Sonochem, 2009, 16: 35–40
-
(2009)
Ultrason Sonochem
, vol.16
, pp. 35-40
-
-
Vidotti, M.1
Salvador, R.P.2
Córdoba de Torresi, S.I.3
-
43
-
-
84964474241
-
In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction
-
Li X, Han GQ, Liu YR, et al. In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta, 2016, 205: 77–84
-
(2016)
Electrochim Acta
, vol.205
, pp. 77-84
-
-
Li, X.1
Han, G.Q.2
Liu, Y.R.3
-
44
-
-
34548633414
-
3 nanorings prepared by a microwave- assisted hydrothermal process and their sensing properties
-
3 nanorings prepared by a microwave- assisted hydrothermal process and their sensing properties. Adv Mater, 2007, 19: 2324–2329
-
(2007)
Adv Mater
, vol.19
, pp. 2324-2329
-
-
Hu, X.1
Yu, J.C.2
Gong, J.3
-
45
-
-
84882331328
-
Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen
-
Xu YF, Gao MR, Zheng YR, et al. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew Chem Int Ed, 2013, 52: 8546–8550
-
(2013)
Angew Chem Int Ed
, vol.52
, pp. 8546-8550
-
-
Xu, Y.F.1
Gao, M.R.2
Zheng, Y.R.3
-
47
-
-
0034699449
-
Direct electrochemical reduction of titaniumdioxide to titaniuminmolten calciumchloride
-
Fray DJ, Chen GZ, Farthing TW. Direct electrochemical reduction of titaniumdioxide to titaniuminmolten calciumchloride. Nature, 2000, 407: 361–364
-
(2000)
Nature
, vol.407
, pp. 361-364
-
-
Fray, D.J.1
Chen, G.Z.2
Farthing, T.W.3
-
48
-
-
79954424769
-
4 nanoparticles, bulk and films: effect of laser power
-
4 nanoparticles, bulk and films: effect of laser power. J Raman Spectrosc, 2011, 42: 1087–1094
-
(2011)
J Raman Spectrosc
, vol.42
, pp. 1087-1094
-
-
Ahlawat, A.1
Sathe, V.G.2
-
49
-
-
0021510782
-
In situ laser raman spectroscopic study of anodic corrosion films on nickel and cobalt
-
Melendres CA. In situ laser raman spectroscopic study of anodic corrosion films on nickel and cobalt. J Electrochem Soc, 1984, 131: 2239–2243
-
(1984)
J Electrochem Soc
, vol.131
, pp. 2239-2243
-
-
Melendres, C.A.1
-
50
-
-
84933073729
-
In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced raman spectroscopy
-
Li CY, Dong JC, Jin X, et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced raman spectroscopy. J Am Chem Soc, 2015, 137: 7648–7651
-
(2015)
J Am Chem Soc
, vol.137
, pp. 7648-7651
-
-
Li, C.Y.1
Dong, J.C.2
Jin, X.3
-
51
-
-
84860135278
-
In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen
-
Yeo BS, Bell AT. In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C, 2012, 116: 8394–8400
-
(2012)
J Phys Chem C
, vol.116
, pp. 8394-8400
-
-
Yeo, B.S.1
Bell, A.T.2
-
52
-
-
84864592302
-
Spectroscopic characterization ofmixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes
-
Landon J, Demeter E, Inoglu N, et al. Spectroscopic characterization ofmixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal, 2012, 2: 1793–1801
-
(2012)
ACS Catal
, vol.2
, pp. 1793-1801
-
-
Landon, J.1
Demeter, E.2
Inoglu, N.3
-
54
-
-
84904506869
-
A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction
-
Long X, Li J, Xiao S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew Chem Int Ed, 2014, 53: 7584–7588
-
(2014)
Angew Chem Int Ed
, vol.53
, pp. 7584-7588
-
-
Long, X.1
Li, J.2
Xiao, S.3
-
55
-
-
84934954844
-
Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
-
Wang H, LeeHW, Deng Y, et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun, 2015, 6: 7261
-
(2015)
Nat Commun
, vol.6
, pp. 7261
-
-
Wang, H.L.1
Deng, Y.2
-
56
-
-
84978971035
-
Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction
-
Ping J, Wang Y, Lu Q, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv Mater, 2016, 28: 7640–7645
-
(2016)
Adv Mater
, vol.28
, pp. 7640-7645
-
-
Ping, J.1
Wang, Y.2
Lu, Q.3
-
57
-
-
84940447034
-
Synergistic effect between metal-nitrogen- carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance
-
Wang J, Li K, Zhong H, et al. Synergistic effect between metal-nitrogen- carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew Chem Int Ed, 2015, 54: 10530–10534
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 10530-10534
-
-
Wang, J.1
Li, K.2
Zhong, H.3
-
58
-
-
84971669867
-
General self-template synthesis of transition-metal oxide and chalcogenidemesoporous nanotubes with enhanced electrochemical performances
-
Wang H, Zhuo S, Liang Y, et al. General self-template synthesis of transition-metal oxide and chalcogenidemesoporous nanotubes with enhanced electrochemical performances. Angew Chem Int Ed, 2016, 55: 9055–9059
-
(2016)
Angew Chem Int Ed
, vol.55
, pp. 9055-9059
-
-
Wang, H.1
Zhuo, S.2
Liang, Y.3
-
59
-
-
84995932370
-
Single-particle mapping of nonequilibrium nanocrystal transformations
-
Ye X, Jones MR, Frechette LB, et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science, 2016, 354: 874–877
-
(2016)
Science
, vol.354
, pp. 874-877
-
-
Ye, X.1
Jones, M.R.2
Frechette, L.B.3
-
60
-
-
85003534361
-
2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media
-
2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci, 2016, 3: 1500426
-
(2016)
Adv Sci
, vol.3
, pp. 1500426
-
-
Li, K.1
Zhang, J.2
Wu, R.3
|