-
1
-
-
84945295917
-
Interactions between the gastrointestinal microbiome and Clostridium difficile
-
Theriot CM, Young VB. 2015. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol 69:445-461. http://dx.doi.org/10.1146/annurev-micro-091014-104115
-
(2015)
Annu Rev Microbiol
, vol.69
, pp. 445-461
-
-
Theriot, C.M.1
Young, V.B.2
-
2
-
-
84862770598
-
Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance
-
Britton RA, Young VB. 2012. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol 20:313-319. http://dx.doi.org/10.1016/j.tim.2012.04.001
-
(2012)
Trends Microbiol
, vol.20
, pp. 313-319
-
-
Britton, R.A.1
Young, V.B.2
-
3
-
-
84969174470
-
The regulatory networks that control Clostridium difficile toxin synthesis
-
Martin-Verstraete I, Peltier J, Dupuy B. 2016. The regulatory networks that control Clostridium difficile toxin synthesis. Toxins (Basel) 8:E153. http://dx.doi.org/10.3390/toxins8050153
-
(2016)
Toxins (Basel)
, vol.8
, pp. E153
-
-
Martin-Verstraete, I.1
Peltier, J.2
Dupuy, B.3
-
4
-
-
84864821482
-
The Clostridium difficile spo0A gene is a persistence and transmission factor
-
Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD. 2012. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80:2704-2711. http://dx.doi.org/10.1128/IAI.00147-12
-
(2012)
Infect Immun
, vol.80
, pp. 2704-2711
-
-
Deakin, L.J.1
Clare, S.2
Fagan, R.P.3
Dawson, L.F.4
Pickard, D.J.5
West, M.R.6
Wren, B.W.7
Fairweather, N.F.8
Dougan, G.9
Lawley, T.D.10
-
5
-
-
84991206581
-
Germinants and their receptors in Clostridia
-
Bhattacharjee D, McAllister KN, Sorg JA. 2016. Germinants and their receptors in Clostridia. J Bacteriol 198:2767-2775. http://dx.doi.org/ 10.1128/JB.00405-16
-
(2016)
J Bacteriol
, vol.198
, pp. 2767-2775
-
-
Bhattacharjee, D.1
McAllister, K.N.2
Sorg, J.A.3
-
6
-
-
84903612457
-
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins
-
Paredes-Sabja D, Shen A, Sorg JA. 2014. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22:406-416. http://dx.doi.org/10.1016/j.tim.2014.04.003
-
(2014)
Trends Microbiol
, vol.22
, pp. 406-416
-
-
Paredes-Sabja, D.1
Shen, A.2
Sorg, J.A.3
-
7
-
-
33744733251
-
Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals
-
Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514-525. http:// dx.doi.org/10.1111/j.1365-2672.2005.02736.x
-
(2006)
J Appl Microbiol
, vol.101
, pp. 514-525
-
-
Setlow, P.1
-
8
-
-
84895725892
-
Germination of spores of Bacillus species: what we know and do not know
-
Setlow P. 2014. Germination of spores of Bacillus species: what we know and do not know. J Bacteriol 196:1297-1305. http://dx.doi.org/10.1128/ JB.01455-13
-
(2014)
J Bacteriol
, vol.196
, pp. 1297-1305
-
-
Setlow, P.1
-
9
-
-
84953910824
-
Spore resistance properties
-
Setlow P. 2014. Spore resistance properties. Microbiol Spectr 2. http:// dx.doi.org/10.1128/microbiolspec.TBS-0003-2012
-
(2014)
Microbiol Spectr 2
-
-
Setlow, P.1
-
10
-
-
84964211748
-
A mobile genetic element profoundly increases heat resistance of bacterial spores
-
Berendsen EM, Boekhorst J, Kuipers OP, Wells-Bennik MH. 2016. A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME J 10:2633-2642. http://dx.doi.org/10.1038/ismej.2016.59
-
(2016)
ISME J
, vol.10
, pp. 2633-2642
-
-
Berendsen, E.M.1
Boekhorst, J.2
Kuipers, O.P.3
Wells-Bennik, M.H.4
-
11
-
-
84861213261
-
Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis
-
Li Y, Davis A, Korza G, Zhang P, Li YQ, Setlow B, Setlow P, Hao B. 2012. Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis. J Bacteriol 194:1875-1884. http://dx.doi.org/ 10.1128/JB.00062-12
-
(2012)
J Bacteriol
, vol.194
, pp. 1875-1884
-
-
Li, Y.1
Davis, A.2
Korza, G.3
Zhang, P.4
Li, Y.Q.5
Setlow, B.6
Setlow, P.7
Hao, B.8
-
12
-
-
84899750952
-
Function of the SpoVAEa and SpoVAF proteins of Bacillus subtilis spores
-
Perez-Valdespino A, Li Y, Setlow B, Ghosh S, Pan D, Korza G, Feeherry FE, Doona CJ, Li YQ, Hao B, Setlow P. 2014. Function of the SpoVAEa and SpoVAF proteins of Bacillus subtilis spores. J Bacteriol 196:2077-2088. http://dx.doi.org/10.1128/JB.01546-14
-
(2014)
J Bacteriol
, vol.196
, pp. 2077-2088
-
-
Perez-Valdespino, A.1
Li, Y.2
Setlow, B.3
Ghosh, S.4
Pan, D.5
Korza, G.6
Feeherry, F.E.7
Doona, C.J.8
Li, Y.Q.9
Hao, B.10
Setlow, P.11
-
13
-
-
84899902629
-
Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel
-
Velásquez J, Schuurman-Wolters G, Birkner JP, Abee T, Poolman B. 2014. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol Microbiol 92:813-823. http://dx.doi.org/10.1111/ mmi.12591
-
(2014)
Mol Microbiol
, vol.92
, pp. 813-823
-
-
Velásquez, J.1
Schuurman-Wolters, G.2
Birkner, J.P.3
Abee, T.4
Poolman, B.5
-
14
-
-
23644455999
-
Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis
-
Vepachedu VR, Setlow P. 2005. Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis. J Bacteriol 187:5677-5682. http://dx.doi.org/10.1128/JB.187.16.5677-5682.2005
-
(2005)
J Bacteriol
, vol.187
, pp. 5677-5682
-
-
Vepachedu, V.R.1
Setlow, P.2
-
15
-
-
33947369915
-
Role of SpoVA proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme
-
Vepachedu VR, Setlow P. 2007. Role of SpoVA proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme. J Bacteriol 189:1565-1572. http:// dx.doi.org/10.1128/JB.01613-06
-
(2007)
J Bacteriol
, vol.189
, pp. 1565-1572
-
-
Vepachedu, V.R.1
Setlow, P.2
-
16
-
-
79955545095
-
Germination of individual Bacillus subtilis spores with alterations in the GerD and SpoVA proteins, which are important in spore germination
-
Wang G, Yi X, Li YQ, Setlow P. 2011. Germination of individual Bacillus subtilis spores with alterations in the GerD and SpoVA proteins, which are important in spore germination. J Bacteriol 193:2301-2311. http:// dx.doi.org/10.1128/JB.00122-11
-
(2011)
J Bacteriol
, vol.193
, pp. 2301-2311
-
-
Wang, G.1
Yi, X.2
Li, Y.Q.3
Setlow, P.4
-
17
-
-
77957337708
-
Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid
-
Sorg JA, Sonenshein AL. 2010. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192:4983-4990. http://dx.doi.org/10.1128/ JB.00610-10
-
(2010)
J Bacteriol
, vol.192
, pp. 4983-4990
-
-
Sorg, J.A.1
Sonenshein, A.L.2
-
18
-
-
63449096364
-
Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination
-
Sorg JA, Sonenshein AL. 2009. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191:1115-1117. http:// dx.doi.org/10.1128/JB.01260-08
-
(2009)
J Bacteriol
, vol.191
, pp. 1115-1117
-
-
Sorg, J.A.1
Sonenshein, A.L.2
-
19
-
-
41549142775
-
Bile salts and glycine as cogerminants for Clostridium difficile spores
-
Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190:2505-2512. http:// dx.doi.org/10.1128/JB.01765-07
-
(2008)
J Bacteriol
, vol.190
, pp. 2505-2512
-
-
Sorg, J.A.1
Sonenshein, A.L.2
-
20
-
-
78650157537
-
Mapping interactions between germinants and Clostridium difficile spores
-
Howerton A, Ramirez N, Abel-Santos E. 2011. Mapping interactions between germinants and Clostridium difficile spores. J Bacteriol 193: 274-282. http://dx.doi.org/10.1128/JB.00980-10
-
(2011)
J Bacteriol
, vol.193
, pp. 274-282
-
-
Howerton, A.1
Ramirez, N.2
Abel-Santos, E.3
-
21
-
-
33745550745
-
The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome
-
Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeño-Tárraga AM, Wang HW, Holden MTG, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. 2006. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779-786. http://dx.doi.org/ 10.1038/ng1830
-
(2006)
Nat Genet
, vol.38
, pp. 779-786
-
-
Sebaihia, M.1
Wren, B.W.2
Mullany, P.3
Fairweather, N.F.4
Minton, N.5
Stabler, R.6
Thomson, N.R.7
Roberts, A.P.8
Cerdeño-Tárraga, A.M.9
Wang, H.W.10
Holden, M.T.G.11
Wright, A.12
Churcher, C.13
Quail, M.A.14
Baker, S.15
Bason, N.16
Brooks, K.17
Chillingworth, T.18
Cronin, A.19
Davis, P.20
Dowd, L.21
Fraser, A.22
Feltwell, T.23
Hance, Z.24
Holroyd, S.25
Jagels, K.26
Moule, S.27
Mungall, K.28
Price, C.29
Rabbinowitsch, E.30
Sharp, S.31
Simmonds, M.32
Stevens, K.33
Unwin, L.34
Whithead, S.35
Dupuy, B.36
Dougan, G.37
Barrell, B.38
Parkhill, J.39
more..
-
22
-
-
84878518519
-
Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection
-
Francis MB, Allen CA, Shrestha R, Sorg JA. 2013. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9:e1003356. http://dx.doi.org/ 10.1371/journal.ppat.1003356
-
(2013)
PLoS Pathog
, vol.9
-
-
Francis, M.B.1
Allen, C.A.2
Shrestha, R.3
Sorg, J.A.4
-
23
-
-
33749653115
-
Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells
-
Masayama A, Hamasaki K, Urakami K, Shimamoto S, Kato S, Makino S, Yoshimura T, Moriyama M, Moriyama R. 2006. Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells. Genes Genet Syst 81:227-234. http://dx.doi.org/10.1266/ ggs.81.227
-
(2006)
Genes Genet Syst
, vol.81
, pp. 227-234
-
-
Masayama, A.1
Hamasaki, K.2
Urakami, K.3
Shimamoto, S.4
Kato, S.5
Makino, S.6
Yoshimura, T.7
Moriyama, M.8
Moriyama, R.9
-
24
-
-
0034981754
-
Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity
-
Shimamoto S, Moriyama R, Sugimoto K, Miyata S, Makino S. 2001. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J Bacteriol 183:3742-3751. http://dx.doi.org/10.1128/JB.183.12.3742-3751.2001
-
(2001)
J Bacteriol
, vol.183
, pp. 3742-3751
-
-
Shimamoto, S.1
Moriyama, R.2
Sugimoto, K.3
Miyata, S.4
Makino, S.5
-
25
-
-
84927921042
-
Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores
-
Banawas S, Korza G, Paredes-Sabja D, Li Y, Hao B, Setlow P, Sarker MR. 2015. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Food Microbiol 50:83-87. http://dx.doi.org/10.1016/j.fm.2015.04.001
-
(2015)
Food Microbiol
, vol.50
, pp. 83-87
-
-
Banawas, S.1
Korza, G.2
Paredes-Sabja, D.3
Li, Y.4
Hao, B.5
Setlow, P.6
Sarker, M.R.7
-
26
-
-
0028865562
-
A gene (sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization
-
Miyata S, Moriyama R, Miyahara N, Makino S. 1995. A gene (sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology 141:2643-2650. http://dx.doi.org/10.1099/13500872-141-10-2643
-
(1995)
Microbiology
, vol.141
, pp. 2643-2650
-
-
Miyata, S.1
Moriyama, R.2
Miyahara, N.3
Makino, S.4
-
27
-
-
78549247875
-
Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate
-
Paredes-Sabja D, Sarker MR. 2010. Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate. Can J Microbiol 56:952-958. http://dx.doi.org/10.1139/w10-083
-
(2010)
Can J Microbiol
, vol.56
, pp. 952-958
-
-
Paredes-Sabja, D.1
Sarker, M.R.2
-
28
-
-
65249186376
-
SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens
-
Paredes-Sabja D, Setlow P, Sarker MR. 2009. SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens. J Bacteriol 191: 2711-2720. http://dx.doi.org/10.1128/JB.01832-08
-
(2009)
J Bacteriol
, vol.191
, pp. 2711-2720
-
-
Paredes-Sabja, D.1
Setlow, P.2
Sarker, M.R.3
-
29
-
-
84946049791
-
Identification of a novel lipoprotein regulator of Clostridium difficile spore germination
-
Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. 2015. Identification of a novel lipoprotein regulator of Clostridium difficile spore germination. PLoS Pathog 11:e1005239. http://dx.doi.org/ 10.1371/journal.ppat.1005239
-
(2015)
PLoS Pathog
, vol.11
-
-
Fimlaid, K.A.1
Jensen, O.2
Donnelly, M.L.3
Francis, M.B.4
Sorg, J.A.5
Shen, A.6
-
30
-
-
84932149860
-
Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination
-
Francis MB, Allen CA, Sorg JA. 2015. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. J Bacteriol 197:2276-2283. http://dx.doi.org/10.1128/JB.02575-14
-
(2015)
J Bacteriol
, vol.197
, pp. 2276-2283
-
-
Francis, M.B.1
Allen, C.A.2
Sorg, J.A.3
-
31
-
-
84971505069
-
Characterization of Clostridium difficile spores lacking either SpoVAC or dipicolinic acid synthetase
-
Donnelly ML, Fimlaid KA, Shen A. 2016. Characterization of Clostridium difficile spores lacking either SpoVAC or dipicolinic acid synthetase. J Bacteriol 198:1694-1707. http://dx.doi.org/10.1128/JB.00986-15
-
(2016)
J Bacteriol
, vol.198
, pp. 1694-1707
-
-
Donnelly, M.L.1
Fimlaid, K.A.2
Shen, A.3
-
32
-
-
0036136396
-
The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis
-
Tovar-Rojo F, Chander M, Setlow B, Setlow P. 2002. The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J Bacteriol 184:584-587. http://dx.doi.org/ 10.1128/JB.184.2.584-587.2002
-
(2002)
J Bacteriol
, vol.184
, pp. 584-587
-
-
Tovar-Rojo, F.1
Chander, M.2
Setlow, B.3
Setlow, P.4
-
33
-
-
84863792386
-
Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production
-
Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP. 2012. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78:4683-4690. http://dx.doi.org/10.1128/ AEM.00249-12
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 4683-4690
-
-
Cartman, S.T.1
Kelly, M.L.2
Heeg, D.3
Heap, J.T.4
Minton, N.P.5
-
34
-
-
70349421685
-
The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates
-
Paredes-Sabja D, Setlow P, Sarker MR. 2009. The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology 155:3464-3472. http://dx.doi.org/ 10.1099/mic.0.030965-0
-
(2009)
Microbiology
, vol.155
, pp. 3464-3472
-
-
Paredes-Sabja, D.1
Setlow, P.2
Sarker, M.R.3
-
35
-
-
0017071240
-
A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium
-
Barela TD, Sherry AD. 1976. A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium. Anal Biochem 71:351-357. http://dx.doi.org/10.1016/S0003-2697(76)80004-8
-
(1976)
Anal Biochem
, vol.71
, pp. 351-357
-
-
Barela, T.D.1
Sherry, A.D.2
-
36
-
-
84857472906
-
Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts
-
Heeg D, Burns DA, Cartman ST, Minton NP. 2012. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS One 7:e32381. http://dx.doi.org/10.1371/ journal.pone.0032381
-
(2012)
PLoS One
, vol.7
-
-
Heeg, D.1
Burns, D.A.2
Cartman, S.T.3
Minton, N.P.4
-
37
-
-
84922748691
-
Variation in germination of Clostridium difficile clinical isolates correlates to disease severity
-
Carlson PE, Jr., Kaiser AM, McColm SA, Bauer JM, Young VB, Aronoff DM, Hanna PC. 2015. Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe 33:64-70. http://dx.doi.org/10.1016/j.anaerobe.2015.02.003
-
(2015)
Anaerobe
, vol.33
, pp. 64-70
-
-
Carlson, P.E.1
Kaiser, A.M.2
McColm, S.A.3
Bauer, J.M.4
Young, V.B.5
Aronoff, D.M.6
Hanna, P.C.7
-
38
-
-
84961150650
-
Reexamining the germination phenotypes of several Clostridium difficile strains suggests another role for the CspC germinant receptor
-
Bhattacharjee D, Francis MB, Ding X, McAllister KN, Shrestha R, Sorg JA. 2015. Reexamining the germination phenotypes of several Clostridium difficile strains suggests another role for the CspC germinant receptor. J Bacteriol 198:777-786. http://dx.doi.org/10.1128/JB.00908-15
-
(2015)
J Bacteriol
, vol.198
, pp. 777-786
-
-
Bhattacharjee, D.1
Francis, M.B.2
Ding, X.3
McAllister, K.N.4
Shrestha, R.5
Sorg, J.A.6
-
39
-
-
84932165258
-
Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy
-
Wang S, Shen A, Setlow P, Li YQ. 2015. Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 197:2361-2373. http://dx.doi.org/10.1128/JB.00200-15
-
(2015)
J Bacteriol
, vol.197
, pp. 2361-2373
-
-
Wang, S.1
Shen, A.2
Setlow, P.3
Li, Y.Q.4
-
40
-
-
84977528854
-
Detecting cortex fragments during bacterial spore germination
-
Francis MB, Sorg JA. 2016. Detecting cortex fragments during bacterial spore germination. J Vis Exp. http://dx.doi.org/10.3791/54146
-
(2016)
J Vis Exp
-
-
Francis, M.B.1
Sorg, J.A.2
-
41
-
-
79952465087
-
Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved
-
Paredes-Sabja D, Setlow P, Sarker MR. 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19:85-94. http://dx.doi.org/10.1016/j.tim.2010.10.004
-
(2011)
Trends Microbiol
, vol.19
, pp. 85-94
-
-
Paredes-Sabja, D.1
Setlow, P.2
Sarker, M.R.3
-
42
-
-
33750740748
-
The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis
-
Wahome PG, Setlow P. 2006. The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis. Arch Microbiol 186:377-383. http://dx.doi.org/10.1007/ s00203-006-0152-2
-
(2006)
Arch Microbiol
, vol.186
, pp. 377-383
-
-
Wahome, P.G.1
Setlow, P.2
-
43
-
-
36349035531
-
Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels
-
Wahome PG, Setlow P. 2008. Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels. Arch Microbiol 189:49-58. http://dx.doi.org/10.1007/s00203-007-0292-z
-
(2008)
Arch Microbiol
, vol.189
, pp. 49-58
-
-
Wahome, P.G.1
Setlow, P.2
-
44
-
-
67349152920
-
Levels and localization of mechanosensitive channel proteins in Bacillus subtilis
-
Wahome PG, Cowan AE, Setlow B, Setlow P. 2009. Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Arch Microbiol 191:403-414. http://dx.doi.org/10.1007/s00203-009-0465-z
-
(2009)
Arch Microbiol
, vol.191
, pp. 403-414
-
-
Wahome, P.G.1
Cowan, A.E.2
Setlow, B.3
Setlow, P.4
-
45
-
-
84895741954
-
Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology
-
Booth IR. 2014. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr Opin Microbiol 18:16-22. http://dx.doi.org/10.1016/j.mib.2014.01.005
-
(2014)
Curr Opin Microbiol
, vol.18
, pp. 16-22
-
-
Booth, I.R.1
-
46
-
-
84992313504
-
From membrane tension to channel gating: a principal energy transfer mechanism for mechanosensitive channels
-
Zhang XC, Liu Z, Li J. 2016. From membrane tension to channel gating: a principal energy transfer mechanism for mechanosensitive channels. Protein Sci 25:1954-1964. http://dx.doi.org/10.1002/pro.3017
-
(2016)
Protein Sci
, vol.25
, pp. 1954-1964
-
-
Zhang, X.C.1
Liu, Z.2
Li, J.3
-
47
-
-
0037389630
-
A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy
-
Cowan AE, Koppel DE, Setlow B, Setlow P. 2003. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc Natl Acad Sci U S A 100:4209-4214. http://dx.doi.org/10.1073/pnas.0636762100
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 4209-4214
-
-
Cowan, A.E.1
Koppel, D.E.2
Setlow, B.3
Setlow, P.4
-
48
-
-
84957845178
-
Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain
-
Kevorkian Y, Shirley DJ, Shen A. 2016. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 122:243-254. http://dx.doi.org/10.1016/j.biochi.2015.07.023
-
(2016)
Biochimie
, vol.122
, pp. 243-254
-
-
Kevorkian, Y.1
Shirley, D.J.2
Shen, A.3
-
49
-
-
84874760766
-
Structural and functional analysis of the CspB protease required for Clostridium spore germination
-
Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. 2013. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9:e1003165. http:// dx.doi.org/10.1371/journal.ppat.1003165
-
(2013)
PLoS Pathog
, vol.9
-
-
Adams, C.M.1
Eckenroth, B.E.2
Putnam, E.E.3
Doublié, S.4
Shen, A.5
-
50
-
-
70349416523
-
Inorganic phosphate and sodium ions are cogerminants for spores of Clostridium perfringens type A food poisoning-related isolates
-
Paredes-Sabja D, Udompijitkul P, Sarker MR. 2009. Inorganic phosphate and sodium ions are cogerminants for spores of Clostridium perfringens type A food poisoning-related isolates. Appl Environ Microbiol 75:6299-6305. http://dx.doi.org/10.1128/AEM.00822-09
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 6299-6305
-
-
Paredes-Sabja, D.1
Udompijitkul, P.2
Sarker, M.R.3
-
51
-
-
66249109266
-
Role of GerKB in germination and outgrowth of Clostridium perfringens spores
-
Paredes-Sabja D, Setlow P, Sarker MR. 2009. Role of GerKB in germination and outgrowth of Clostridium perfringens spores. Appl Environ Microbiol 75:3813-3817. http://dx.doi.org/10.1128/AEM.00048-09
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 3813-3817
-
-
Paredes-Sabja, D.1
Setlow, P.2
Sarker, M.R.3
-
52
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, III, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343-345. http://dx.doi.org/10.1038/ nmeth.1318
-
(2009)
Nat Methods
, vol.6
, pp. 343-345
-
-
Gibson, D.G.1
Young, L.2
Chuang, R.Y.3
Venter, J.C.4
Hutchison, C.A.5
Smith, H.O.6
|