메뉴 건너뛰기




Volumn 29, Issue 3, 2017, Pages 237-243

Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River

Author keywords

Adaptive neuro fuzzy inference system; Bangladesh; Biochemical oxygen demand; Surma River; Sylhet; Water quality

Indexed keywords

ALKALINITY; BIOCHEMICAL OXYGEN DEMAND; CALCITE; CALCIUM CARBONATE; FORECASTING; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; MEAN SQUARE ERROR; OXYGEN; RIVERS; WATER HARDNESS; WATER QUALITY;

EID: 85021645869     PISSN: 10183639     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jksues.2015.02.001     Document Type: Article
Times cited : (107)

References (23)
  • 1
    • 84904626016 scopus 로고    scopus 로고
    • Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters
    • Abyaneh, Z., Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J. Environ. Health Sci. Eng. 12:40 (2014), 1–8.
    • (2014) J. Environ. Health Sci. Eng. , vol.12 , Issue.40 , pp. 1-8
    • Abyaneh, Z.1
  • 2
    • 85021690922 scopus 로고    scopus 로고
    • Deterioration of water quality of Surma River influenced by natural canals passing through Sylhet City of Bangladesh
    • Sept. 4. pp.
    • Ahmed, M., Ahmed, A.A.M., Mazumder, R.K., 2010. Deterioration of water quality of Surma River influenced by natural canals passing through Sylhet City of Bangladesh. In: Proceedings of Intl. Conf. on Env. Aspects of Bangladesh Sept. 4. pp. 182–185.
    • (2010) Proceedings of Intl. In: Conf. on Env. Aspects of Bangladesh , pp. 182-185
    • Ahmed, M.1    Ahmed, A.A.M.2    Mazumder, R.K.3
  • 4
    • 0003536372 scopus 로고
    • Standard Methods for the Examination of Water and Wastewater
    • American Public Health Association New York
    • APHA-AWWA-WPCF, Standard Methods for the Examination of Water and Wastewater. 1989, American Public Health Association, New York.
    • (1989)
    • APHA-AWWA-WPCF1
  • 5
    • 84891459623 scopus 로고    scopus 로고
    • Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water
    • Areerachakul, S., Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water. Int. J. Chem. Biol. Eng. 6 (2012), 286–290.
    • (2012) Int. J. Chem. Biol. Eng. , vol.6 , pp. 286-290
    • Areerachakul, S.1
  • 6
    • 85021634571 scopus 로고    scopus 로고
    • Modeling the Water Quality of Lake Eymir using Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) (M
    • Sc thesis). Submitted to the Department of Environmental Engineering, METU, Ankara.
    • Aslan, M., 2008. Modeling the Water Quality of Lake Eymir using Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) (M.Sc thesis). Submitted to the Department of Environmental Engineering, METU, Ankara.
    • (2008)
    • Aslan, M.1
  • 7
    • 84866004662 scopus 로고    scopus 로고
    • Discharge modelling using adaptive neuro-fuzzy inference system
    • Bisht, D.C.S., Jangid, A., Discharge modelling using adaptive neuro-fuzzy inference system. Int. J. Adv. Sci. Technol. 31 (2011), 99–114.
    • (2011) Int. J. Adv. Sci. Technol. , vol.31 , pp. 99-114
    • Bisht, D.C.S.1    Jangid, A.2
  • 8
    • 0003587186 scopus 로고
    • Water Quality Assessments
    • first ed. Chapman and Hall Ltd. London
    • Chapman, D., Water Quality Assessments. first ed., 1992, Chapman and Hall Ltd., London pp. 80–81.
    • (1992) , pp. 80-81
    • Chapman, D.1
  • 9
    • 34547173207 scopus 로고    scopus 로고
    • Analysis of groundwater quality using fuzzy synthetic evaluation
    • Dahiya, S., Singh, B., Gaur, S., Garg, V.K., Kushwaha, H.S., Analysis of groundwater quality using fuzzy synthetic evaluation. J. Hazard. Mater. 147 (2007), 938–946.
    • (2007) J. Hazard. Mater. , vol.147 , pp. 938-946
    • Dahiya, S.1    Singh, B.2    Gaur, S.3    Garg, V.K.4    Kushwaha, H.S.5
  • 10
    • 33947623656 scopus 로고    scopus 로고
    • Fuzzy evaluation of water quality classification
    • Icaga, Y., Fuzzy evaluation of water quality classification. Ecol. Indic. 7 (2007), 710–718.
    • (2007) Ecol. Indic. , vol.7 , pp. 710-718
    • Icaga, Y.1
  • 11
    • 0003753097 scopus 로고    scopus 로고
    • Neuro-Fuzzy and Soft Computing: A Computing Approach to Learning and Machine Intelligence
    • Prentice Hall Englewood Cliffs, NJ
    • Jang, J.S.R., Sun, C.T., Neuro-Fuzzy and Soft Computing: A Computing Approach to Learning and Machine Intelligence. 1997, Prentice Hall, Englewood Cliffs, NJ.
    • (1997)
    • Jang, J.S.R.1    Sun, C.T.2
  • 12
    • 0027601884 scopus 로고
    • Adaptive network-based Fuzzy Inference System
    • Jang, S., Adaptive network-based Fuzzy Inference System. IEEE Journal 23:3 (1993), 665–685.
    • (1993) IEEE Journal , vol.23 , Issue.3 , pp. 665-685
    • Jang, S.1
  • 14
    • 0026989504 scopus 로고    scopus 로고
    • Fuzzy systems as universal approximators
    • Kosko, B., 1999. Fuzzy systems as universal approximators. In: Proc. IEEE Int. Conf. Fuzzy Sys. pp. 1153–1162.
    • (1999) Proc. In: IEEE Int. Conf. Fuzzy Sys. , pp. 1153-1162
    • Kosko, B.1
  • 15
    • 67349175600 scopus 로고    scopus 로고
    • River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil
    • Lermontov, A., Yokoyama, L., Lermontov, M., Machado, M.A.S., River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecol. Indic. 9 (2009), 1188–1197.
    • (2009) Ecol. Indic. , vol.9 , pp. 1188-1197
    • Lermontov, A.1    Yokoyama, L.2    Lermontov, M.3    Machado, M.A.S.4
  • 16
    • 22044457732 scopus 로고    scopus 로고
    • The water quality of the Ria de Aveiro lagoon, Portugal: from the observations to the implementation of a numerical model
    • Lopes, J.F., Dias, J.M., Cardoso, A.C., Silva, C.I.V., The water quality of the Ria de Aveiro lagoon, Portugal: from the observations to the implementation of a numerical model. Mar. Environ. Res. 60 (2005), 594–628.
    • (2005) Mar. Environ. Res. , vol.60 , pp. 594-628
    • Lopes, J.F.1    Dias, J.M.2    Cardoso, A.C.3    Silva, C.I.V.4
  • 17
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part I, A discussion of principles
    • Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models, Part I, A discussion of principles. J. Hydrol. 10:3 (1970), 282–290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 18
    • 77649190348 scopus 로고    scopus 로고
    • Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia
    • Rankovic, V., Radulovi, J., Radojevic, I., Ostojic, A., Comic, L., Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol. Modell. 221 (2012), 1239–1244.
    • (2012) Ecol. Modell. , vol.221 , pp. 1239-1244
    • Rankovic, V.1    Radulovi, J.2    Radojevic, I.3    Ostojic, A.4    Comic, L.5
  • 19
    • 77954843353 scopus 로고    scopus 로고
    • Prediction of river water quality by adaptive neuro fuzzy inference system (ANFIS)
    • Safavi, H.R., Prediction of river water quality by adaptive neuro fuzzy inference system (ANFIS). J. Environ. Stud., 36(1), 2012.
    • (2012) J. Environ. Stud. , vol.36 , Issue.1
    • Safavi, H.R.1
  • 20
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modelling nitrate concentration in rivers
    • Suen, J.P., Eheart, J.W., Asce, M., Evaluation of neural networks for modelling nitrate concentration in rivers. J. Water Resour. Plann. Manage. 129 (2003), 505–510.
    • (2003) J. Water Resour. Plann. Manage. , vol.129 , pp. 505-510
    • Suen, J.P.1    Eheart, J.W.2    Asce, M.3
  • 21
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • Wu, J., Han, J., Annambhotla, S., Bryant, S., Artificial neural networks for forecasting watershed runoff and stream flows. J. Hydrol. Eng. 10:3 (2005), 216–222.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.3 , pp. 216-222
    • Wu, J.1    Han, J.2    Annambhotla, S.3    Bryant, S.4
  • 22
    • 85021682383 scopus 로고    scopus 로고
    • A Temporal Neuro-fuzzy Approach for Time Series Analysis (PhD thesis paper)
    • Department of Computer Engineering, The Middle East Technical University
    • Yilmaz, N.A.S., 2003. A Temporal Neuro-fuzzy Approach for Time Series Analysis (PhD thesis paper). Department of Computer Engineering, The Middle East Technical University, pp. 34–35.
    • (2003) , pp. 34-35
    • Yilmaz, N.A.S.1
  • 23
    • 0000251270 scopus 로고
    • Comparison between fuzzy reasoning and neural networks methods to forecast runoff discharge
    • Zhu, M.L., Fujita, M., Comparison between fuzzy reasoning and neural networks methods to forecast runoff discharge. J. Hydrosci. Hydraul. Eng. 12:2 (1994), 131–141.
    • (1994) J. Hydrosci. Hydraul. Eng. , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.