메뉴 건너뛰기




Volumn 12, Issue 1, 2014, Pages

Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

Author keywords

ANN; BOD; COD; MLR; Wastewater treatment plant

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOCHEMICAL OXYGEN DEMAND; CHEMICAL OXYGEN DEMAND; COMPARATIVE STUDY; LINEAR PROGRAMING; MULTIPLE REGRESSION; PARAMETERIZATION; PERFORMANCE ASSESSMENT; PH; WASTE FACILITY; WATER QUALITY; WATER TREATMENT;

EID: 84904626016     PISSN: None     EISSN: 2052336X     Source Type: Journal    
DOI: 10.1186/2052-336X-12-40     Document Type: Article
Times cited : (197)

References (26)
  • 1
    • 77951753302 scopus 로고    scopus 로고
    • Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra
    • Hur J, Lee BM, Lee TH, Park DH: Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra. Sensors (Basel) 2010, 10(4):2460-2471.
    • (2010) Sensors (Basel) , vol.10 , Issue.4 , pp. 2460-2471
    • Hur, J.1    Lee, B.M.2    Lee, T.H.3    Park, D.H.4
  • 3
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-A case study
    • Singh KP, Basant A, Malik A, Jain G: Artificial neural network modeling of the river water quality-A case study. Ecol Model 2009, 220:888-895.
    • (2009) Ecol Model , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 4
    • 65249087289 scopus 로고    scopus 로고
    • Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks
    • Najah A, Elshafie A, Karim OA, Jaffar O: Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks. Eur J Sci Res 2009, 28(3):422-435.
    • (2009) Eur J Sci Res , vol.28 , Issue.3 , pp. 422-435
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 5
    • 56849087528 scopus 로고    scopus 로고
    • Application of Artificial Neural Networks to Estimate Wastewater Treatment Plant Inlet Biochemical Oxygen Demand
    • Dogan E, Ates A, Ceren Yilmaz E, Eren B: Application of Artificial Neural Networks to Estimate Wastewater Treatment Plant Inlet Biochemical Oxygen Demand. Environ Prog 2008, 27(4):439-445.
    • (2008) Environ Prog , vol.27 , Issue.4 , pp. 439-445
    • Dogan, E.1    Ates, A.2    Ceren Yilmaz, E.3    Eren, B.4
  • 6
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modeling nitrate concentrations in rivers
    • DOI 10.1061/(ASCE)0733-9496(2003)129:6(505)
    • Suen JP, Eheart JW, Asce M: Evaluation of Neural Networks for Modelling Nitrate Concentration in Rivers. J Wat Res Plan Man 2003, 129:505-510. (Pubitemid 37450409)
    • (2003) Journal of Water Resources Planning and Management , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.-P.1    Eheart, J.W.2
  • 8
    • 77958083206 scopus 로고    scopus 로고
    • Artificial neural network modelling of a large-scale wastewater treatment plant operation
    • Guclu D, Dursun S: Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess Biosyst Eng 2010, 33:1051-1058.
    • (2010) Bioprocess Biosyst Eng , vol.33 , pp. 1051-1058
    • Guclu, D.1    Dursun, S.2
  • 9
    • 77952889835 scopus 로고    scopus 로고
    • The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process
    • Elmolla ES, Chaudhuria M, Eltoukhy MM: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J Hazard Mater 2010, 179:127-134.
    • (2010) J Hazard Mater , vol.179 , pp. 127-134
    • Elmolla, E.S.1    Chaudhuria, M.2    Eltoukhy, M.M.3
  • 11
    • 15944400056 scopus 로고    scopus 로고
    • Determination of the relationship between sewage odour and BOD by neural networks
    • DOI 10.1016/j.envsoft.2004.04.012, PII S1364815204001173
    • Onkal-Engina G, Demir I, Engin S: Determination of the relationship between sewage odour and BOD by neural networks. Environ Model Software 2005, 20:843-850. (Pubitemid 40427896)
    • (2005) Environmental Modelling and Software , vol.20 , Issue.7 , pp. 843-850
    • Onkal-Engin, G.1    Demir, I.2    Engin, S.N.3
  • 12
    • 42449123323 scopus 로고    scopus 로고
    • Prediction of water quality indices by regression analysis and artificial neural networks
    • Rene ER, Saidutta MB: Prediction of Water Quality Indices by Regression Analysis and Artificial Neural Networks. Int J Environ Res 2008, 2(2):183-188. (Pubitemid 351454637)
    • (2008) International Journal of Environmental Research , vol.2 , Issue.2 , pp. 183-188
    • Rene, E.R.1    Saidutta, M.B.2
  • 13
    • 9344240409 scopus 로고    scopus 로고
    • Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill Part II. Nonlinear approaches
    • DOI 10.1016/j.cej.2004.06.012, PII S1385894704003092
    • Oliveira-Esquerre KM, Seborg DE, Mori M, Bruns RE: Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill Part II. Nonlinear approaches. Chem Eng J 2004, 105:61-69. (Pubitemid 39558523)
    • (2004) Chemical Engineering Journal , vol.105 , Issue.1-2 , pp. 61-69
    • Oliveira-Esquerre, K.P.1    Seborg, D.E.2    Mori, M.3    Bruns, R.E.4
  • 14
    • 50649100676 scopus 로고    scopus 로고
    • An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands
    • Akratos CS, Papaspyros JNE, Tsihrintzis VA: An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chem Eng J 2008, 143:96-110.
    • (2008) Chem Eng J , vol.143 , pp. 96-110
    • Akratos, C.S.1    Papaspyros, J.N.E.2    Tsihrintzis, V.A.3
  • 15
    • 84870574822 scopus 로고
    • APHA (American Public Health Association) 19th edition. Washington, DC: APHA
    • APHA (American Public Health Association): Standard Methods for the Examination of Water and Wastewater. 19th edition. Washington, DC: APHA; 1995.
    • (1995) Standard Methods for the Examination of Water and Wastewater
  • 16
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P, Kiely G, Corcoran G: Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 2008, 355:192-201.
    • (2008) J Hydrol , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 17
    • 56349165252 scopus 로고    scopus 로고
    • Prediction of dynamic hysteresis loops of nano-crystalline cores
    • Haciismailoglu MC, Kucuk I, Derebasi N: Prediction of dynamic hysteresis loops of nano-crystalline cores. Expert Syst Appl 2009, 36:2225-2227.
    • (2009) Expert Syst Appl , vol.36 , pp. 2225-2227
    • Haciismailoglu, M.C.1    Kucuk, I.2    Derebasi, N.3
  • 18
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • DOI 10.1016/j.jhydrol.2005.07.032, PII S0022169405003732
    • Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL: Flood estimation at ungauged sites using artificial neural networks. J Hydrol 2006, 319:391-409. (Pubitemid 43199910)
    • (2006) Journal of Hydrology , vol.319 , Issue.1-4 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 19
    • 77952883472 scopus 로고    scopus 로고
    • Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran
    • Tabari H, Marofi S, Zare Abyaneh H, Sharifi MR: Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput & Applic 2010, 19(4):625-635.
    • (2010) Neural Comput & Applic , vol.19 , Issue.4 , pp. 625-635
    • Tabari, H.1    Marofi, S.2    Zare Abyaneh, H.3    Sharifi, M.R.4
  • 20
    • 34547525049 scopus 로고    scopus 로고
    • Comparison of genetic algorithm and neural network approaches for the drying process of carrot
    • Erenturk S, Erenturk K: Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J Food Engineering 2007, 78:905-912.
    • (2007) J Food Engineering , vol.78 , pp. 905-912
    • Erenturk, S.1    Erenturk, K.2
  • 21
    • 16244386248 scopus 로고    scopus 로고
    • A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models
    • DOI 10.1016/j.eswa.2005.01.006, PII S0957417405000072
    • Razi MA, Athappilly K: A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Syst Appl 2005, 29:65-74. (Pubitemid 40454393)
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 65-74
    • Razi, M.A.1    Athappilly, K.2
  • 22
    • 0036604567 scopus 로고    scopus 로고
    • Prediction of fire resistance of concrete filled tubular steel columns using neural networks
    • DOI 10.1016/S0379-7112(01)00065-0, PII S0379711201000650
    • Al-khaleefi AM, Terro MJ, Alex AP, Wang Y: Prediction of fire resistance of concrete filled tubular steel columns using neural networks. Fire Safety Journal 2002, 37:339-352. (Pubitemid 34249599)
    • (2002) Fire Safety Journal , vol.37 , Issue.4 , pp. 339-352
    • Al-Khaleefi, A.M.1    Terro, M.J.2    Alex, A.P.3    Wang, Y.4
  • 23
    • 34447509444 scopus 로고    scopus 로고
    • Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent
    • DOI 10.1016/j.compchemeng.2006.10.012, PII S0098135406002869
    • Pai TY, Tsai YP, Lo HM, Tsai CH, Lin CY: Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent. Comput Chem Eng 2007, 31(10):1272-1281. (Pubitemid 47077483)
    • (2007) Computers and Chemical Engineering , vol.31 , Issue.10 , pp. 1272-1281
    • Pai, T.Y.1    Tsai, Y.P.2    Lo, H.M.3    Tsai, C.H.4    Lin, C.Y.5
  • 24
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • DOI 10.1016/j.envsoft.2003.10.005, PII S1364815203002172
    • Hamed MM, Khalafallah MG, Hassanien EA: Prediction of wastewater treatment plant performance using artificial neural networks. Environ Model Software 2004, 19:919-928. (Pubitemid 38991765)
    • (2004) Environmental Modelling and Software , vol.19 , Issue.10 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 25
    • 39749188209 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models in the prediction of urban stormwater quality
    • DOI 10.2175/106143007X184591
    • May D, Sivakumar M: Comparison of artificial neural network and regression models in the prediction of urban stormwater quality. Water Environ Res 2008, 80(1):4-9. (Pubitemid 351846982)
    • (2008) Water Environment Research , vol.80 , Issue.1 , pp. 4-9
    • May, D.1    Sivakumar, M.2
  • 26
    • 84877660994 scopus 로고    scopus 로고
    • Prediction of water quality from simple field parameters
    • Verma AK, Singh TN: Prediction of water quality from simple field parameters. Environ Earth Sci 2013, 69(3):821-829.
    • (2013) Environ Earth Sci , vol.69 , Issue.3 , pp. 821-829
    • Verma, A.K.1    Singh, T.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.