메뉴 건너뛰기




Volumn 6, Issue 1, 2017, Pages

Topological analysis of data

Author keywords

persistent homology; simplicial complexes; topological data analysis

Indexed keywords

COMPLEX NETWORKS; DATA HANDLING; INFORMATION ANALYSIS;

EID: 85020920878     PISSN: None     EISSN: 21931127     Source Type: Journal    
DOI: 10.1140/epjds/s13688-017-0104-x     Document Type: Letter
Times cited : (104)

References (62)
  • 5
    • 44849122540 scopus 로고    scopus 로고
    • Understanding individual human mobility patterns
    • Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779-782
    • (2008) Nature , vol.453 , Issue.7196 , pp. 779-782
    • Gonzalez, M.C.1    Hidalgo, C.A.2    Barabasi, A.-L.3
  • 6
    • 85013742511 scopus 로고    scopus 로고
    • Network neuroscience
    • Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353-364
    • (2017) Nat Neurosci , vol.20 , Issue.3 , pp. 353-364
    • Bassett, D.S.1    Sporns, O.2
  • 7
    • 84958962374 scopus 로고    scopus 로고
    • Universal resilience patterns in complex networks
    • Gao J, Barzel B, Barabási A-L (2016) Universal resilience patterns in complex networks. Nature 530(7590):307-312
    • (2016) Nature , vol.530 , Issue.7590 , pp. 307-312
    • Gao, J.1    Barzel, B.2    Barabási, A.-L.3
  • 8
    • 84964221875 scopus 로고    scopus 로고
    • Control of complex networks requires both structure and dynamics
    • Gates AJ, Rocha LM (2016) Control of complex networks requires both structure and dynamics. Sci Rep 6:24456
    • (2016) Sci Rep , vol.6
    • Gates, A.J.1    Rocha, L.M.2
  • 9
    • 85012073983 scopus 로고    scopus 로고
    • Solving the quantum many-body problem with artificial neural networks
    • Carleo G, Troyer M (2017) Solving the quantum many-body problem with artificial neural networks. Science 355(6325):602-606. doi:10.1126/science.aag2302
    • (2017) Science , vol.355 , Issue.6325 , pp. 602-606
    • Carleo, G.1    Troyer, M.2
  • 12
    • 0041383594 scopus 로고
    • Poincaré and topology
    • Aleksandrov PS (1972) Poincaré and topology. Russ Math Surv 27(1):157-168
    • (1972) Russ Math Surv , vol.27 , Issue.1 , pp. 157-168
    • Aleksandrov, P.S.1
  • 14
    • 0024471183 scopus 로고
    • Finite topology as applied to image analysis
    • Kovalevsky VA (1989) Finite topology as applied to image analysis. Comput Vis Graph Image Process 46(2):141-161
    • (1989) Comput Vis Graph Image Process , vol.46 , Issue.2 , pp. 141-161
    • Kovalevsky, V.A.1
  • 16
    • 70049091784 scopus 로고    scopus 로고
    • Topology and data
    • Carlsson G (2009) Topology and data. Bull Am Math Soc 46(2):255-308
    • (2009) Bull Am Math Soc , vol.46 , Issue.2 , pp. 255-308
    • Carlsson, G.1
  • 17
    • 41849100389 scopus 로고    scopus 로고
    • Barcodes: the persistent topology of data
    • Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45(1):61-75. doi:10.1090/S0273-0979-07-01191-3
    • (2008) Bull Am Math Soc , vol.45 , Issue.1 , pp. 61-75
    • Ghrist, R.1
  • 20
    • 84946594591 scopus 로고    scopus 로고
    • Clique topology reveals intrinsic geometric structure in neural correlations
    • Giusti C, Pastalkova E, Curto C, Itskov V (2015) Clique topology reveals intrinsic geometric structure in neural correlations. Proc Natl Acad Sci 112(44):13455-13460. doi:10.1073/pnas.1506407112
    • (2015) Proc Natl Acad Sci , vol.112 , Issue.44 , pp. 13455-13460
    • Giusti, C.1    Pastalkova, E.2    Curto, C.3    Itskov, V.4
  • 21
    • 84962798292 scopus 로고    scopus 로고
    • Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages
    • Yoo J, Kim EY, Ahn YM, Ye JC (2016) Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages. J Neurosci Methods 267:1-13
    • (2016) J Neurosci Methods , vol.267 , pp. 1-13
    • Yoo, J.1    Kim, E.Y.2    Ahn, Y.M.3    Ye, J.C.4
  • 22
    • 84879331246 scopus 로고    scopus 로고
    • Persistent homology of collaboration networks
    • Carstens C, Horadam K (2013) Persistent homology of collaboration networks. Math Probl Eng 2013:815035
    • (2013) Math Probl Eng , vol.2013
    • Carstens, C.1    Horadam, K.2
  • 23
    • 85020876845 scopus 로고    scopus 로고
    • Topological data analysis for extracting hidden features of client data
    • Springer, Berlin
    • Schebesch KB, Stecking RW (2017) Topological data analysis for extracting hidden features of client data. In: Operations research proceedings 2015. Springer, Berlin, pp 483-489
    • (2017) Operations research proceedings 2015 , pp. 483-489
    • Schebesch, K.B.1    Stecking, R.W.2
  • 24
    • 84976542864 scopus 로고    scopus 로고
    • Hierarchical structures of amorphous solids characterized by persistent homology
    • Hiraoka Y, Nakamura T, Hirata A, Escolar EG, Matsue K, Nishiura Y (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proc Natl Acad Sci 113(26):7035-7040. doi:10.1073/pnas.1520877113
    • (2016) Proc Natl Acad Sci , vol.113 , Issue.26 , pp. 7035-7040
    • Hiraoka, Y.1    Nakamura, T.2    Hirata, A.3    Escolar, E.G.4    Matsue, K.5    Nishiura, Y.6
  • 26
    • 84955484078 scopus 로고    scopus 로고
    • Quantum algorithms for topological and geometric analysis of data
    • Lloyd S, Garnerone S, Zanardi P (2016) Quantum algorithms for topological and geometric analysis of data. Nat Commun 7:10138
    • (2016) Nat Commun , vol.7
    • Lloyd, S.1    Garnerone, S.2    Zanardi, P.3
  • 27
    • 84937022111 scopus 로고    scopus 로고
    • Persistent homology and many-body atomic structure for medium-range order in the glass
    • Nakamura T, Hiraoka Y, Hirata A, Escolar EG, Nishiura Y (2015) Persistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology 26(30):304001
    • (2015) Nanotechnology , vol.26 , Issue.30
    • Nakamura, T.1    Hiraoka, Y.2    Hirata, A.3    Escolar, E.G.4    Nishiura, Y.5
  • 29
    • 85076471198 scopus 로고    scopus 로고
    • Topological methods for the analysis of high dimensional data sets and 3d object recognition
    • Singh G, Mémoli F, Carlsson GE (2007) Topological methods for the analysis of high dimensional data sets and 3d object recognition. In: SPBG, pp 91-100
    • (2007) SPBG , pp. 91-100
    • Singh, G.1    Mémoli, F.2    Carlsson, G.E.3
  • 30
    • 41849100389 scopus 로고    scopus 로고
    • Barcodes: the persistent topology of data
    • Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45(1):61-75
    • (2008) Bull Am Math Soc , vol.45 , Issue.1 , pp. 61-75
    • Ghrist, R.1
  • 32
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: simplified data processing on large clusters
    • Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107-113
    • (2008) Commun ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 33
    • 79955561607 scopus 로고    scopus 로고
    • Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival
    • Nicolau M, Levine AJ, Carlsson G (2011) Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci 108(17):7265-7270
    • (2011) Proc Natl Acad Sci , vol.108 , Issue.17 , pp. 7265-7270
    • Nicolau, M.1    Levine, A.J.2    Carlsson, G.3
  • 37
    • 85007210019 scopus 로고    scopus 로고
    • Toward automated prediction of manufacturing productivity based on feature selection using topological data analysis
    • IEEE Press, New York
    • Guo W, Banerjee AG (2016) Toward automated prediction of manufacturing productivity based on feature selection using topological data analysis. In: Assembly and manufacturing (ISAM), 2016 IEEE international symposium on. IEEE Press, New York, pp 31-36
    • (2016) Assembly and manufacturing (ISAM), 2016 IEEE international symposium on , pp. 31-36
    • Guo, W.1    Banerjee, A.G.2
  • 38
    • 84905368673 scopus 로고    scopus 로고
    • Persistent homology analysis of protein structure, flexibility, and folding
    • Xia K, Wei G-W (2014) Persistent homology analysis of protein structure, flexibility, and folding. Int J Numer Methods Biomed Eng 30(8):814-844
    • (2014) Int J Numer Methods Biomed Eng , vol.30 , Issue.8 , pp. 814-844
    • Xia, K.1    Wei, G.-W.2
  • 41
    • 84933532710 scopus 로고    scopus 로고
    • Unveiling patterns of international communities in a global city using mobile phone data
    • Bajardi P, Delfino M, Panisson A, Petri G, Tizzoni M (2015) Unveiling patterns of international communities in a global city using mobile phone data. EPJ Data Sci 4(1):3
    • (2015) EPJ Data Sci , vol.4 , Issue.1
    • Bajardi, P.1    Delfino, M.2    Panisson, A.3    Petri, G.4    Tizzoni, M.5
  • 42
    • 84946594591 scopus 로고    scopus 로고
    • Clique topology reveals intrinsic geometric structure in neural correlations
    • Giusti C, Pastalkova E, Curto C, Itskov V (2015) Clique topology reveals intrinsic geometric structure in neural correlations. Proc Natl Acad Sci 112(44):13455-13460
    • (2015) Proc Natl Acad Sci , vol.112 , Issue.44 , pp. 13455-13460
    • Giusti, C.1    Pastalkova, E.2    Curto, C.3    Itskov, V.4
  • 43
    • 85013777274 scopus 로고    scopus 로고
    • Sizemore A, Giusti C, Betzel RF, Bassett DS Preprint
    • Sizemore A, Giusti C, Betzel RF, Bassett DS (2016) Closures and cavities in the human connectome. Preprint. arXiv:1608.03520
    • (2016) Closures and cavities in the human connectome
  • 47
    • 84897669750 scopus 로고    scopus 로고
    • Sharp vanishing thresholds for cohomology of random flag complexes
    • Kahle M (2014) Sharp vanishing thresholds for cohomology of random flag complexes. Ann Math (2) 179(3):1085-1107. doi:10.4007/annals.2014.179.3.5
    • (2014) Ann Math (2) , vol.179 , Issue.3 , pp. 1085-1107
    • Kahle, M.1
  • 51
    • 84937390778 scopus 로고    scopus 로고
    • Clear and compress: computing persistent homology in chunks
    • Springer, Berlin
    • Bauer U, Kerber M, Reininghaus J (2014) Clear and compress: computing persistent homology in chunks. In: Mathematics and visualization. Springer, Berlin, pp 103-117
    • (2014) Mathematics and visualization , pp. 103-117
    • Bauer, U.1    Kerber, M.2    Reininghaus, J.3
  • 53
    • 84902116091 scopus 로고    scopus 로고
    • On the computational complexity of Betti numbers: reductions from matrix rank
    • Society for Industrial and Applied Mathematics, Philadelphia
    • Edelsbrunner H, Parsa S (2014) On the computational complexity of Betti numbers: reductions from matrix rank. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 152-160
    • (2014) Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms , pp. 152-160
    • Edelsbrunner, H.1    Parsa, S.2
  • 54
    • 84945459116 scopus 로고    scopus 로고
    • The compressed annotation matrix: an efficient data structure for computing persistent cohomology
    • Boissonnat J-D, Dey TK, Maria C (2015) The compressed annotation matrix: an efficient data structure for computing persistent cohomology. Algorithmica 73(3):607-619
    • (2015) Algorithmica , vol.73 , Issue.3 , pp. 607-619
    • Boissonnat, J.-D.1    Dey, T.K.2    Maria, C.3
  • 55
    • 84881611962 scopus 로고    scopus 로고
    • Morse theory for filtrations and efficient computation of persistent homology
    • Mischaikow K, Nanda V (2013) Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput Geom 50(2):330-353
    • (2013) Discrete Comput Geom , vol.50 , Issue.2 , pp. 330-353
    • Mischaikow, K.1    Nanda, V.2
  • 57
    • 84923901980 scopus 로고    scopus 로고
    • Statistical topological data analysis using persistence landscapes
    • Bubenik P (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77-102
    • (2015) J Mach Learn Res , vol.16 , Issue.1 , pp. 77-102
    • Bubenik, P.1
  • 60
    • 84996437275 scopus 로고    scopus 로고
    • Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA Preprint
    • Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA (2015) A roadmap for the computation of persistent homology. Preprint. arXiv:1506.08903
    • (2015) A roadmap for the computation of persistent homology


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.