-
2
-
-
84946930607
-
-
arXiv preprint 1403.6015
-
Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W. Hogg, and Michael O'Neil. Fast direct methods for Gaussian processes and the analysis of NASA Kepler mission data. arXiv preprint 1403.6015, 2014.
-
(2014)
Fast Direct Methods for Gaussian Processes and the Analysis of NASA Kepler Mission, data
-
-
Ambikasaran, S.1
Foreman-Mackey, D.2
Greengard, L.3
Hogg, D.W.4
O'Neil, M.5
-
5
-
-
84888155846
-
Gaussian processes for big data
-
July
-
James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In UAI, July 2013.
-
(2013)
UAI
-
-
Hensman, J.1
Fusi, N.2
Lawrence, N.D.3
-
7
-
-
85040231097
-
Scalable variational Gaussian process classiffication
-
May
-
James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. Scalable variational Gaussian process classiffication. In AISTATS, May 2015b.
-
(2015)
AISTATS
-
-
Hensman, J.1
De Matthews, A.G.G.2
Ghahramani, Z.3
-
9
-
-
85032944981
-
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
-
May
-
Alexander G. de G. Matthews, James Hensman, Richard E. Turner, and Zoubin Ghahramani.On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes. In AISTATS, May 2016.
-
(2016)
AISTATS
-
-
De Matthews, A.G.G.1
Hensman, J.2
Turner, R.E.3
Ghahramani, Z.4
-
12
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Manfred Opper and Cedric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786{792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
13
-
-
80555140075
-
Scikitlearn: Machine learning in Python
-
Fabian Pedregosa et al. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12:2825{2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
14
-
-
79551489429
-
Gaussian Processes for machine learning (GPML) toolbox
-
Carl E. Rasmussen and Hannes Nickisch. Gaussian Processes for machine learning (GPML) toolbox. Journal of Machine Learning Research, 11:3011{3015, 11 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, Issue.11
, pp. 3011-3015
-
-
Rasmussen, C.E.1
Nickisch, H.2
-
16
-
-
80053168930
-
Variational learning of inducing variables in sparse Gaussian processes
-
April
-
Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS, April 2009.
-
(2009)
AISTATS
-
-
Titsias, M.K.1
-
17
-
-
84877621994
-
GPstuff: Bayesian modeling with Gaussian processes
-
Jarno Vanhatalo, Jaakko Riihimaki, Jouni Hartikainen, Pasi Jylanki, Ville Tolvanen, and Aki Vehtari. GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14(1):1175{1179, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1175-1179
-
-
Vanhatalo, J.1
Riihimaki, J.2
Hartikainen, J.3
Jylanki, P.4
Tolvanen, V.5
Vehtari, A.6
|