메뉴 건너뛰기




Volumn 8, Issue 2, 2017, Pages 136-148

Comparing multiple imputation methods for systematically missing subject-level data

Author keywords

longitudinal data; multiple imputation; research synthesis; systematic missing data

Indexed keywords

INFORMATION PROCESSING; METHODOLOGY; STATISTICAL ANALYSIS;

EID: 85020669737     PISSN: None     EISSN: 17592887     Source Type: Journal    
DOI: 10.1002/jrsm.1192     Document Type: Article
Times cited : (11)

References (21)
  • 4
    • 0038600714 scopus 로고    scopus 로고
    • Bayesian analysis of covariance matrices and dynamic models for longitudinal data
    • Daniels M, Pourahmadi M 2002. Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 89: 553–566.
    • (2002) Biometrika , vol.89 , pp. 553-566
    • Daniels, M.1    Pourahmadi, M.2
  • 5
    • 65649116904 scopus 로고    scopus 로고
    • Predicting longitudinal patterns of functional deficits in children with traumatic brain injury
    • Fay TB, Yeates KO, Wade SL, Drotar D, Stancin T, Taylor HG 2009. Predicting longitudinal patterns of functional deficits in children with traumatic brain injury. Neuropsychology 23: 271–282.
    • (2009) Neuropsychology , vol.23 , pp. 271-282
    • Fay, T.B.1    Yeates, K.O.2    Wade, S.L.3    Drotar, D.4    Stancin, T.5    Taylor, H.G.6
  • 9
    • 84926444242 scopus 로고    scopus 로고
    • Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using mice
    • Jolani S, Debray TPA, Koffijberg H, van Buuren S, Moons KGM 2015. Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using mice. Statistics in Medicine 34: 1841–1863.
    • (2015) Statistics in Medicine , vol.34 , pp. 1841-1863
    • Jolani, S.1    Debray, T.P.A.2    Koffijberg, H.3    van Buuren, S.4    Moons, K.G.M.5
  • 10
    • 62149129273 scopus 로고    scopus 로고
    • Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials
    • Jones AP, Riley RD, Williamson PR, Whitehead A 2009. Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clinical Trials 6: 16–27.
    • (2009) Clinical Trials , vol.6 , pp. 16-27
    • Jones, A.P.1    Riley, R.D.2    Williamson, P.R.3    Whitehead, A.4
  • 12
    • 0033637095 scopus 로고    scopus 로고
    • Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies
    • Liu M, Taylor J, Belin T 2000. Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics 56: 1157–1163.
    • (2000) Biometrics , vol.56 , pp. 1157-1163
    • Liu, M.1    Taylor, J.2    Belin, T.3
  • 13
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan TE, Lepkowski JM, Van HJ, Solenberger P 2001. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27: 85–96.
    • (2001) Survey Methodology , vol.27 , pp. 85-96
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van, H.J.3    Solenberger, P.4
  • 14
    • 84887138473 scopus 로고    scopus 로고
    • Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
    • Resche-Rigon M, White IR, Bartlett JW, Peters SA, Thompson SG 2013. Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Statistics in Medicine 32: 4890–8905.
    • (2013) Statistics in Medicine , vol.32 , pp. 4890-8905
    • Resche-Rigon, M.1    White, I.R.2    Bartlett, J.W.3    Peters, S.A.4    Thompson, S.G.5
  • 16
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer J, Yucel R 2002. Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11: 437–457.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.1    Yucel, R.2
  • 17
    • 0037098178 scopus 로고    scopus 로고
    • How should meta-regression analyses be undertaken and interpreted?
    • Thompson SG, Higgins JPT 2002. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 21: 1559–1573.
    • (2002) Statistics in Medicine , vol.21 , pp. 1559-1573
    • Thompson, S.G.1    Higgins, J.P.T.2
  • 20
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White IR, Royston P, Wood AM 2011. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 30: 377–399.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 21
    • 45749108295 scopus 로고    scopus 로고
    • Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
    • Yucel R 2008. Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A 366: 2389–2403.
    • (2008) Philosophical Transactions of the Royal Society A , vol.366 , pp. 2389-2403
    • Yucel, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.