메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Vision-based plant disease detection system using transfer and deep learning

Author keywords

Convolutional neural networks; Deep learning; Machine vision; Olea europaea L.; Transfer learning; Xylella fastidiosa

Indexed keywords

BACTERIA; COMMUNICATION CHANNELS (INFORMATION THEORY); COMPUTER VISION; CONVOLUTION; DIAGNOSIS; NEURAL NETWORKS; PLANTS (BOTANY); STOCHASTIC SYSTEMS;

EID: 85020648288     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.13031/aim.201700241     Document Type: Conference Paper
Times cited : (49)

References (37)
  • 3
    • 85003905065 scopus 로고    scopus 로고
    • Using convolutional neural network filters to measure left-right mirror symmetry in images
    • Brachmann, A., & Redies, C. (2016). Using Convolutional Neural Network Filters to Measure Left-Right Mirror Symmetry in Images. Symmetry, 8(12), 144. https://doi.org/10.3390/sym8120144.
    • (2016) Symmetry , vol.8 , Issue.12 , pp. 144
    • Brachmann, A.1    Redies, C.2
  • 5
    • 84947274167 scopus 로고    scopus 로고
    • Emotion recognition in the wild with feature fusion and multiple kernel learning
    • Chen, J., Chen, Z., Chi, Z., & Fu, H. (2014). Emotion recognition in the wild with feature fusion and multiple kernel learning. In ACM Intl. Conf. Multimodal Interaction Workshops (pp. 508-513).
    • (2014) ACM Intl. Conf. Multimodal Interaction Workshops , pp. 508-513
    • Chen, J.1    Chen, Z.2    Chi, Z.3    Fu, H.4
  • 7
    • 84910029843 scopus 로고    scopus 로고
    • Background suppressing Gabor energy filtering
    • Cruz, A. C, Bhanu, B., & Thakoor, N. S. (2015). Background suppressing Gabor energy filtering. Pattern Recognition Letters, 52, 40-47. https://doi.org/10.1016/j.patrec.2014.10.001.
    • (2015) Pattern Recognition Letters , vol.52 , pp. 40-47
    • Cruz, A.C.1    Bhanu, B.2    Thakoor, N.S.3
  • 8
    • 84941152492 scopus 로고    scopus 로고
    • Application of image processing techniques in the characterization of plant leafs
    • IEEE
    • Cunha, J. B. (2003). Application of image processing techniques in the characterization of plant leafs. In 2003 IEEE International Symposium on Industrial Electronics (pp. 612-616). IEEE. https://doi.org/10.1109/ISIE.2003.1267322
    • (2003) 2003 IEEE International Symposium on Industrial Electronics , pp. 612-616
    • Cunha, J.B.1
  • 9
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 12
    • 0042665432 scopus 로고    scopus 로고
    • Contour detection based on nonclassical receptive field inhibition
    • Grigorescu, C, Petkov, N, & Westenberg, M. A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 12(7), 729-739. https://doi.org/10.1109/TIP.2003.814250.
    • (2003) IEEE Transactions on Image Processing , vol.12 , Issue.7 , pp. 729-739
    • Grigorescu, C.1    Petkov, N.2    Westenberg, M.A.3
  • 14
    • 84937655864 scopus 로고
    • Visual pattern recognition by moment invariants
    • Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8, 179-187.
    • (1962) IRE Transactions on Information Theory , vol.8 , pp. 179-187
    • Hu, M.K.1
  • 16
    • 84983740858 scopus 로고    scopus 로고
    • Plant pathology and information technology: Opportunity for management of disease outbreak and applications in regulation frameworks
    • 2016
    • Luvisi, A., Ampatzidis, Y, & De Bellis, L. (2016). Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks. Sustainability 2016, 8(8), 831; doi: 10.3390/su8080831.
    • (2016) Sustainability , vol.8 , Issue.8 , pp. 831
    • Luvisi, A.1    Ampatzidis, Y.2    De Bellis, L.3
  • 20
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 255-258. https://doi.org/10.1109/IJCNN.2004.1381049.
    • (1995) The Handbook of Brain Theory and Neural Networks , vol.3361 , Issue.10 , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 21
    • 84956719965 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • Liu, C., Yuen, J., & Torralba, A. (2015). Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(5), 15-49. https://doi.org/10.1007/978-3-319-23048-1-2.
    • (2015) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.33 , Issue.5 , pp. 15-49
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 23
    • 84988564472 scopus 로고    scopus 로고
    • Using deep learning for image-based plant disease detection
    • Mohanty, S. P., Hughes, D., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Front. Plant Sci., 7, 1419. https://doi.org/10.3389/fpls.2016.01419.
    • (2016) Front. Plant Sci. , vol.7 , pp. 1419
    • Mohanty, S.P.1    Hughes, D.2    Salathé, M.3
  • 24
    • 84971012113 scopus 로고    scopus 로고
    • Plant leaf recognition using shape features and colour histogram with k-nearest neighbour classifiers
    • Munisami, T., Ramsurn, M., Kishnah, S., & Pudaruth, S. (2015). Plant Leaf Recognition Using Shape Features and Colour Histogram with K-nearest Neighbour Classifiers. In Procedia Computer Science (Vol. 58, pp. 740-747). https://doi.org/10.1016/j.procs.2015.08.095.
    • (2015) Procedia Computer Science , vol.58 , pp. 740-747
    • Munisami, T.1    Ramsurn, M.2    Kishnah, S.3    Pudaruth, S.4
  • 27
    • 85035359113 scopus 로고    scopus 로고
    • n. d.. Retrieved April 25, 2017, from
    • PlantVillage. (n. d.). Retrieved April 25, 2017, from https://www.plantvillage.org/.
  • 32
    • 84962296829 scopus 로고    scopus 로고
    • Learning using privileged information?: Similarity control and knowledge transfer
    • Vapnik, V. (2015). Learning Using Privileged Information?: Similarity Control and Knowledge Transfer. Journal of Machine Learning Research, 16, 2023-2049. https://doi.org/10.1007/978-3-319-17091-6-1.
    • (2015) Journal of Machine Learning Research , vol.16 , pp. 2023-2049
    • Vapnik, V.1
  • 33
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • Vapnik, V., & Vashist, A. (2009). A new learning paradigm: Learning using privileged information. Neural Networks, 22(5-6), 544-557. https://doi.org/10.1016/j.neunet.2009.06.042.
    • (2009) Neural Networks , vol.22 , Issue.5-6 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 36
    • 84987955949 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • Proceedings of NIPS, 27, Retrieved from
    • Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems 27(Proceedings of NIPS), 27, 1-9. Retrieved from http://arxiv.org/abs/1411.1792.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 1-9
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.