메뉴 건너뛰기




Volumn , Issue 9781447167341, 2015, Pages 295-340

Markovian models for sequential data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85020018449     PISSN: 16103947     EISSN: 21978441     Source Type: Book Series    
DOI: 10.1007/978-1-4471-6735-8_10     Document Type: Chapter
Times cited : (34)

References (43)
  • 2
    • 0001862769 scopus 로고
    • An inequality and associated maximization technique in statistical estimation for probabilistic functions of a Markov process
    • L.E. Baum. An inequality and associated maximization technique in statistical estimation for probabilistic functions of a Markov process. Inequalities, 3:1–8, 1972.
    • (1972) Inequalities , vol.3 , pp. 1-8
    • Baum, L.E.1
  • 3
    • 84965063004 scopus 로고
    • An inequality with applications to statistical prediction for functions of Markov processes and to amodel of ecology
    • L.E. Baum and J. Eagon. An inequality with applications to statistical prediction for functions of Markov processes and to amodel of ecology. Bulletin of the AmericanMathematical Society, 73:360–363, 1967.
    • (1967) Bulletin of the Americanmathematical Society , vol.73 , pp. 360-363
    • Baum, L.E.1    Eagon, J.2
  • 4
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals ofMathematical Statistics, 41:164–171, 1970.
    • (1970) Annals Ofmathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 6
    • 0000802938 scopus 로고    scopus 로고
    • Markovian models for sequential data
    • Y. Bengio. Markovian models for sequential data. Neural Computing Surveys, 2:129–162, 1999.
    • (1999) Neural Computing Surveys , vol.2 , pp. 129-162
    • Bengio, Y.1
  • 7
    • 84898971246 scopus 로고    scopus 로고
    • An asynchronous hidden Markov model for audio-visual speech recognition
    • S. Bengio. An asynchronous hidden Markov model for audio-visual speech recognition. In Advances in Neural Information Processing Systems, pages 1237–1244, 2003.
    • (2003) Advances in Neural Information Processing Systems , pp. 1237-1244
    • Bengio, S.1
  • 13
    • 0030194330 scopus 로고    scopus 로고
    • A training algorithm for statistical sequence recognition with applications to transition-based speech recognition
    • H. Bourlard, Y. Konig, and N. Morgan. A training algorithm for statistical sequence recognition with applications to transition-based speech recognition. IEEE Signal Processing Letters, 3(7):203–205, 1996.
    • (1996) IEEE Signal Processing Letters , vol.3 , Issue.7 , pp. 203-205
    • Bourlard, H.1    Konig, Y.2    Morgan, N.3
  • 15
    • 85118743743 scopus 로고    scopus 로고
    • Statistical language modeling using the CMU-Cambridge Toolkit
    • P. Clarkson and R. Rosenfled. Statistical language modeling using the CMU-Cambridge Toolkit. In Proceedings of Eurospeech, pages 2707–2710, 1997.
    • (1997) Proceedings of Eurospeech , pp. 2707-2710
    • Clarkson, P.1    Rosenfled, R.2
  • 18
    • 0002818041 scopus 로고
    • A Markov model for switching regressions
    • S. Godfeld and R. Quandt. A Markov model for switching regressions. Journal of Econometrics, 1:3–16, 1973.
    • (1973) Journal of Econometrics , vol.1 , pp. 3-16
    • Godfeld, S.1    Quandt, R.2
  • 19
    • 0000803388 scopus 로고
    • The population frequencies of species and the estimation of population parameters
    • I.J. Good. The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4):237–264, 1953.
    • (1953) Biometrika , vol.40 , Issue.3-4 , pp. 237-264
    • Good, I.J.1
  • 20
    • 0001342006 scopus 로고
    • A new approach of the economic analysis of non-stationary time series and the business cycle
    • J. Hamilton. A new approach of the economic analysis of non-stationary time series and the business cycle. Econometrica, 57:357–384, 1989.
    • (1989) Econometrica , vol.57 , pp. 357-384
    • Hamilton, J.1
  • 22
    • 85135149324 scopus 로고    scopus 로고
    • Estimation of global posteriors and forward-backward training of hybrid HMM-ANN systems
    • J. Hennebert, C. Ris, H. Bourlard, S. Renals, and N. Morgan. Estimation of global posteriors and forward-backward training of hybrid HMM-ANN systems. In Proceedings of Eurospeech, pages 1951–1954, 1997.
    • (1997) Proceedings of Eurospeech , pp. 1951-1954
    • Hennebert, J.1    Ris, C.2    Bourlard, H.3    Renals, S.4    Morgan, N.5
  • 25
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction
    • R. Kalman and R. Bucy. New results in linear filtering and prediction. Journal of Basic Engineering, 83D:95–108, 1961.
    • (1961) Journal of Basic Engineering , vol.83D , pp. 95-108
    • Kalman, R.1    Bucy, R.2
  • 26
    • 0023312404 scopus 로고
    • Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Transactions on Acoustics
    • S. Katz. Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3):400–401, 1987.
    • (1987) Speech, and Signal Processing , vol.35 , Issue.3 , pp. 400-401
    • Katz, S.1
  • 27
    • 0036722767 scopus 로고    scopus 로고
    • Testing the correlation of word error rate and perplexity
    • D. Klakow and J. Peters. Testing the correlation of word error rate and perplexity. Speech Communication, 38(1):19–28, 2002.
    • (2002) Speech Communication , vol.38 , Issue.1 , pp. 19-28
    • Klakow, D.1    Peters, J.2
  • 30
    • 0344891583 scopus 로고
    • An example of statistical investigation in the text of Eugene Onyegin illustrating coupling of test in chains
    • A. Markov. An example of statistical investigation in the text of Eugene Onyegin illustrating coupling of test in chains. Proceedings of the Academy of Sciences of St. Petersburg, 1913.
    • (1913) Proceedings of the Academy of Sciences of St. Petersburg
    • Markov, A.1
  • 32
    • 0012078715 scopus 로고    scopus 로고
    • Statistical language modeling
    • In S.Young andG. Bloothooft, editors, Kluwer Academic Publishers
    • H. Ney, S. Martin, and F. Wessel. Statistical language modeling. In S.Young andG. Bloothooft, editors, Corpus Based Methods in Language and Speech Processing, pages 174–207. Kluwer Academic Publishers, 1997.
    • (1997) Corpus Based Methods in Language and Speech Processing , pp. 174-207
    • Ney, H.1    Martin, S.2    Wessel, F.3
  • 33
    • 0000800741 scopus 로고
    • Atutorial on hiddenMarkovmodels and selected applications in speech recognition
    • A. Waibel and K.F. Lee, editors
    • L. Rabiner. Atutorial on hiddenMarkovmodels and selected applications in speech recognition. In A. Waibel and K.F. Lee, editors, Readings in Speech Recognition, pages 267–296. 1989.
    • (1989) Readings in Speech Recognition , pp. 267-296
    • Rabiner, L.1
  • 34
    • 0030282113 scopus 로고    scopus 로고
    • The power of amnesia: Learning probabilistic automata with variable memory length
    • D. Ron, Y. Singer, and N. Tishby. The power of amnesia: learning probabilistic automata with variable memory length. Machine Learning, 25(2–3):117–149, 1996.
    • (1996) Machine Learning , vol.25 , Issue.2-3 , pp. 117-149
    • Ron, D.1    Singer, Y.2    Tishby, N.3
  • 36
    • 33646907991 scopus 로고    scopus 로고
    • Two decades of Statistical Language Modeling: Where do we go from here?
    • R. Rosenfeld. Two decades of Statistical Language Modeling: where do we go from here? Proceedings of IEEE, 88(8):1270–1278, 2000.
    • (2000) Proceedings of IEEE , vol.88 , Issue.8 , pp. 1270-1278
    • Rosenfeld, R.1
  • 37
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • R. Shumway and D. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 4(3):253–264, 1982.
    • (1982) Journal of Time Series Analysis , vol.4 , Issue.3 , pp. 253-264
    • Shumway, R.1    Stoffer, D.2
  • 38
    • 83255167044 scopus 로고    scopus 로고
    • Anintroduction to Conditional Random Fields
    • C. Sutton and A. McCallum. Anintroduction to Conditional Random Fields. Machine Learning, 4(4):267–373, 2011.
    • (2011) Machine Learning , vol.4 , Issue.4 , pp. 267-373
    • Sutton, C.1    McCallum, A.2
  • 41
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimal decoding algorithm
    • A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.
    • (1967) IEEE Transactions on Information Theory , vol.13 , pp. 260-269
    • Viterbi, A.J.1
  • 42
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian Mixtures
    • L. Xu and M.J. Jordan. On convergence properties of the EM algorithm for Gaussian Mixtures. Neural Computation, 8:129–151, 1996.
    • (1996) Neural Computation , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.