메뉴 건너뛰기




Volumn 982, Issue , 2017, Pages 9-19

Class-modelling in food analytical chemistry: Development, sampling, optimisation and validation issues – A tutorial

Author keywords

Class modelling; Discriminant analysis; Food authenticity; One class classification; Optimisation; Validation

Indexed keywords

CHEMICAL ANALYSIS; DISCRIMINANT ANALYSIS; FOOD PRODUCTS; PATTERN RECOGNITION;

EID: 85019758789     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2017.05.013     Document Type: Review
Times cited : (185)

References (64)
  • 1
    • 11444265821 scopus 로고    scopus 로고
    • Vanguard-rearguard analytical strategies
    • Valcárcel, M., Cárdenas, S., Vanguard-rearguard analytical strategies. Trac. Trends Anal. Chem. 24 (2005), 67–74, 10.1016/j.trac.2004.07.016.
    • (2005) Trac. Trends Anal. Chem. , vol.24 , pp. 67-74
    • Valcárcel, M.1    Cárdenas, S.2
  • 2
    • 84930180016 scopus 로고    scopus 로고
    • Modern qualitative analysis by miniaturized and microfluidic systems
    • Ríos, Á., Zougagh, M., Modern qualitative analysis by miniaturized and microfluidic systems. Trac. Trends Anal. Chem. 69 (2015), 105–113, 10.1016/j.trac.2015.04.003.
    • (2015) Trac. Trends Anal. Chem. , vol.69 , pp. 105-113
    • Ríos, Á.1    Zougagh, M.2
  • 3
    • 84959258269 scopus 로고    scopus 로고
    • Analysis of food and emulsions
    • Guthausen, G., Analysis of food and emulsions. Trac. Trends Anal. Chem. 83 (2016), 103–106, 10.1016/j.trac.2016.02.011.
    • (2016) Trac. Trends Anal. Chem. , vol.83 , pp. 103-106
    • Guthausen, G.1
  • 5
    • 84882764255 scopus 로고    scopus 로고
    • Chapter 2 – data analysis and chemometrics
    • Picó Y., Oliveri, P., Forina, M., Chapter 2 – data analysis and chemometrics. Chem. Anal. Food Tech. Appl, 2012, 25–57, 10.1016/B978-0-12-384862-8.00002-9.
    • (2012) Chem. Anal. Food Tech. Appl , pp. 25-57
    • Picó, Y.1    Oliveri, P.2    Forina, M.3
  • 7
    • 84859731462 scopus 로고    scopus 로고
    • Multivariate class modeling for the verification of food-authenticity claims
    • Oliveri, P., Downey, G., Multivariate class modeling for the verification of food-authenticity claims. Trac. - Trends Anal. Chem. 35 (2012), 74–86.
    • (2012) Trac. - Trends Anal. Chem. , vol.35 , pp. 74-86
    • Oliveri, P.1    Downey, G.2
  • 8
    • 79956325552 scopus 로고    scopus 로고
    • One-class classifiers
    • Brereton, R.G., One-class classifiers. J. Chemom. 25 (2011), 225–246, 10.1002/cem.1397.
    • (2011) J. Chemom. , vol.25 , pp. 225-246
    • Brereton, R.G.1
  • 9
    • 84900011520 scopus 로고    scopus 로고
    • One-class classification: taxonomy of study and review of techniques
    • Khan, S.S., Madden, M.G., One-class classification: taxonomy of study and review of techniques. Knowl. Eng. Rev. 29 (2014), 345–374, 10.1017/S026988891300043X.
    • (2014) Knowl. Eng. Rev. , vol.29 , pp. 345-374
    • Khan, S.S.1    Madden, M.G.2
  • 10
    • 84982801386 scopus 로고    scopus 로고
    • Fault Detection via Recurrence Time Statistics and One-class Classification
    • Martínez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A., Principe, J.C., Fault Detection via Recurrence Time Statistics and One-class Classification. 2016, 10.1016/j.patrec.2016.07.019.
    • (2016)
    • Martínez-Rego, D.1    Fontenla-Romero, O.2    Alonso-Betanzos, A.3    Principe, J.C.4
  • 11
    • 84983744652 scopus 로고    scopus 로고
    • Fault detection of batch process based on MSICA-OCSVM
    • IEEE
    • Gao, X., Ma, R., Fault detection of batch process based on MSICA-OCSVM. 2016 Chinese Control Decis. Conf, 2016, IEEE, 3461–3465, 10.1109/CCDC.2016.7531581.
    • (2016) 2016 Chinese Control Decis. Conf , pp. 3461-3465
    • Gao, X.1    Ma, R.2
  • 13
    • 84980315531 scopus 로고    scopus 로고
    • One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders
    • Retico, A., Gori, I., Giuliano, A., Muratori, F., Calderoni, S., One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders. Front. Neurosci., 10, 2016, 306, 10.3389/fnins.2016.00306.
    • (2016) Front. Neurosci. , vol.10 , pp. 306
    • Retico, A.1    Gori, I.2    Giuliano, A.3    Muratori, F.4    Calderoni, S.5
  • 14
    • 84938807136 scopus 로고    scopus 로고
    • Malware detection using bilayer behavior abstraction and improved one-class support vector machines
    • Miao, Q., Liu, J., Cao, Y., Song, J., Malware detection using bilayer behavior abstraction and improved one-class support vector machines. Int. J. Inf. Secur 15 (2016), 361–379, 10.1007/s10207-015-0297-6.
    • (2016) Int. J. Inf. Secur , vol.15 , pp. 361-379
    • Miao, Q.1    Liu, J.2    Cao, Y.3    Song, J.4
  • 15
    • 84922388872 scopus 로고    scopus 로고
    • Using KNN and SVM Based One-class Classifier for Detecting Online Radicalization on Twitter
    • Springer International Publishing
    • Agarwal, S., Sureka, A., Using KNN and SVM Based One-class Classifier for Detecting Online Radicalization on Twitter. 2015, Springer International Publishing, 431–442, 10.1007/978-3-319-14977-6_47.
    • (2015) , pp. 431-442
    • Agarwal, S.1    Sureka, A.2
  • 16
    • 84957037006 scopus 로고    scopus 로고
    • Discriminant analysis is an inappropriate method of authentication
    • Rodionova, O.Y., Titova, A.V., Pomerantsev, A.L., Discriminant analysis is an inappropriate method of authentication. Trac. Trends Anal. Chem. 78 (2016), 17–22, 10.1016/j.trac.2016.01.010.
    • (2016) Trac. Trends Anal. Chem. , vol.78 , pp. 17-22
    • Rodionova, O.Y.1    Titova, A.V.2    Pomerantsev, A.L.3
  • 17
    • 84900379519 scopus 로고    scopus 로고
    • Wavelength selection with a view to a simplified handheld optical system to estimate grape ripeness
    • Giovenzana, V., Beghi, R., Malegori, C., Civelli, R., Guidetti, R., Wavelength selection with a view to a simplified handheld optical system to estimate grape ripeness. Am. J. Enol. Vitic., 65, 2014.
    • (2014) Am. J. Enol. Vitic. , vol.65
    • Giovenzana, V.1    Beghi, R.2    Malegori, C.3    Civelli, R.4    Guidetti, R.5
  • 18
    • 84901673595 scopus 로고    scopus 로고
    • Testing of a VIS-NIR system for the monitoring of long-term apple storage
    • Beghi, R., Giovanelli, G., Malegori, C., Giovenzana, V., Guidetti, R., Testing of a VIS-NIR system for the monitoring of long-term apple storage. Food Bioprocess Technol. 7 (2014), 2134–2143, 10.1007/s11947-014-1294-x.
    • (2014) Food Bioprocess Technol. , vol.7 , pp. 2134-2143
    • Beghi, R.1    Giovanelli, G.2    Malegori, C.3    Giovenzana, V.4    Guidetti, R.5
  • 19
    • 78649322340 scopus 로고    scopus 로고
    • Application of class-modelling techniques to near infrared data for food authentication purposes
    • Oliveri, P., Di Egidio, V., Woodcock, T., Downey, G., Application of class-modelling techniques to near infrared data for food authentication purposes. Food Chem. 125 (2011), 1450–1456.
    • (2011) Food Chem. , vol.125 , pp. 1450-1456
    • Oliveri, P.1    Di Egidio, V.2    Woodcock, T.3    Downey, G.4
  • 20
    • 84964012088 scopus 로고    scopus 로고
    • Uv-visible spectroscopy and multivariate classification as a screening tool for determining the adulteration of sauces
    • Di Anibal, C.V., Rodríguez, S., Albertengo, L., Rodríguez, M.S., Uv-visible spectroscopy and multivariate classification as a screening tool for determining the adulteration of sauces. Food Anal. Methods 9 (2016), 3117–3124, 10.1007/s12161-016-0485-7.
    • (2016) Food Anal. Methods , vol.9 , pp. 3117-3124
    • Di Anibal, C.V.1    Rodríguez, S.2    Albertengo, L.3    Rodríguez, M.S.4
  • 21
    • 84987978344 scopus 로고    scopus 로고
    • Food inspection using hyperspectral imaging and SVDD
    • M.S. Kim K. Chao B.A. Chin
    • Uslu, F.S., Binol, H., Bal, A., Food inspection using hyperspectral imaging and SVDD. Kim, M.S., Chao, K., Chin, B.A., (eds.) International Society for Optics and Photonics, 2016, 98640N, 10.1117/12.2223938.
    • (2016) International Society for Optics and Photonics , pp. 98640N
    • Uslu, F.S.1    Binol, H.2    Bal, A.3
  • 22
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R.A., The use of multiple measurements in taxonomic problems. Ann. Eugen. 7 (1936), 179–188, 10.1111/j.1469-1809.1936.tb02137.x.
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 23
    • 0042167947 scopus 로고
    • Posterior odds for multivariate normal classifications
    • Geisser, S., Posterior odds for multivariate normal classifications. J. R. Stat. Soc. Ser. B 26 (1964), 69–76 https://www.jstor.org/stable/2984606?seq=1#page_scan_tab_contents.
    • (1964) J. R. Stat. Soc. Ser. B , vol.26 , pp. 69-76
    • Geisser, S.1
  • 24
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker, M., Rayens, W., Partial least squares for discrimination. J. Chemom. 17 (2003), 166–173, 10.1002/cem.785.
    • (2003) J. Chemom. , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 25
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T., Hart, P., Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13 (1967), 21–27, 10.1109/TIT.1967.1053964.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 26
    • 84982279421 scopus 로고    scopus 로고
    • Differentiation of mechanically and chemically extracted hazelnut oils based on their sterol and wax profiles
    • Gumus, C.E., Yorulmaz, A., Tekin, A., Differentiation of mechanically and chemically extracted hazelnut oils based on their sterol and wax profiles. J. Am. Oil Chem. Soc., 2016, 1–11, 10.1007/s11746-016-2882-x.
    • (2016) J. Am. Oil Chem. Soc. , pp. 1-11
    • Gumus, C.E.1    Yorulmaz, A.2    Tekin, A.3
  • 27
    • 85028237765 scopus 로고    scopus 로고
    • Reliable discriminant analysis tool for controlling the roast degree of coffee samples through chemical markers approach
    • de Toledo, P.R.A.B., de Melo, M.M.R., Pezza, H.R., Pezza, L., Toci, A.T., Silva, C.M., Reliable discriminant analysis tool for controlling the roast degree of coffee samples through chemical markers approach. Eur. Food Res. Technol., 2016, 1–8, 10.1007/s00217-016-2790-1.
    • (2016) Eur. Food Res. Technol. , pp. 1-8
    • de Toledo, P.R.A.B.1    de Melo, M.M.R.2    Pezza, H.R.3    Pezza, L.4    Toci, A.T.5    Silva, C.M.6
  • 28
    • 79951723432 scopus 로고    scopus 로고
    • Comparison between classical and innovative class-modelling techniques for the characterisation of a PDO olive oil
    • Oliveri, P., Casale, M., Casolino, M.C., Baldo, M.A., Nizzi Grifi, F., Forina, M., Comparison between classical and innovative class-modelling techniques for the characterisation of a PDO olive oil. Anal. Bioanal. Chem. 399 (2011), 2105–2113, 10.1007/s00216-010-4377-1.
    • (2011) Anal. Bioanal. Chem. , vol.399 , pp. 2105-2113
    • Oliveri, P.1    Casale, M.2    Casolino, M.C.3    Baldo, M.A.4    Nizzi Grifi, F.5    Forina, M.6
  • 29
    • 0005996899 scopus 로고
    • SIMCA - classification by means of disjoint cross validated principal components models
    • R.G. Brereton Elsevier Science
    • Kvalheim, O.M., Karstang, T.V., SIMCA - classification by means of disjoint cross validated principal components models. Brereton, R.G., (eds.) Multivar. Pattern Recognit. Chemom. Illus. By Case Stud, 1992, Elsevier Science, 232.
    • (1992) Multivar. Pattern Recognit. Chemom. Illus. By Case Stud , pp. 232
    • Kvalheim, O.M.1    Karstang, T.V.2
  • 30
    • 0002409366 scopus 로고
    • UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution
    • Derde, M.P., Massart, D.L., UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution. Anal. Chim. Acta 184 (1986), 33–51, 10.1016/S0003-2670(00)86468-5.
    • (1986) Anal. Chim. Acta , vol.184 , pp. 33-51
    • Derde, M.P.1    Massart, D.L.2
  • 31
    • 25044454974 scopus 로고
    • UNEQ: a class modelling supervised pattern recognition technique
    • Derde, M.P., Massart, D.L., UNEQ: a class modelling supervised pattern recognition technique. Mikrochim. Acta 89 (1986), 139–152, 10.1007/BF01207313.
    • (1986) Mikrochim. Acta , vol.89 , pp. 139-152
    • Derde, M.P.1    Massart, D.L.2
  • 32
    • 0002199780 scopus 로고
    • Multivariate quality control illustrated by air testing of sample bombsights
    • C. Eisenhart M.W. Hastay W.A. Wallis McGraw-Hill Book Company, Inc. New York and London
    • Hotelling, H., Multivariate quality control illustrated by air testing of sample bombsights. Eisenhart, C., Hastay, M.W., Wallis, W.A., (eds.) Sel. Tech. Stat. Anal. Sci. Ind. Res. Prod. Manag. Eng, 1947, McGraw-Hill Book Company, Inc., New York and London, 111–184.
    • (1947) Sel. Tech. Stat. Anal. Sci. Ind. Res. Prod. Manag. Eng , pp. 111-184
    • Hotelling, H.1
  • 34
    • 84984355965 scopus 로고
    • Distance and class space in the UNEQ class-modeling technique
    • Forina, M., Lanteri, S., Sarabia, L., Distance and class space in the UNEQ class-modeling technique. J. Chemom. 9 (1995), 69–89, 10.1002/cem.1180090202.
    • (1995) J. Chemom. , vol.9 , pp. 69-89
    • Forina, M.1    Lanteri, S.2    Sarabia, L.3
  • 35
    • 0016973661 scopus 로고
    • Pattern recognition by means of disjoint principal components models
    • Wold, S., Pattern recognition by means of disjoint principal components models. Pattern Recognit. 8 (1976), 127–139, 10.1016/0031-3203(76)90014-5.
    • (1976) Pattern Recognit. , vol.8 , pp. 127-139
    • Wold, S.1
  • 36
    • 0003946510 scopus 로고    scopus 로고
    • Principal Component Analysis
    • Springer-Verlag New York
    • Jolliffe, I.T., Principal Component Analysis. 2002, Springer-Verlag, New York.
    • (2002)
    • Jolliffe, I.T.1
  • 37
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold, S., Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20 (1978), 397–405, 10.1080/00401706.1978.10489693.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1
  • 38
    • 85041475458 scopus 로고    scopus 로고
    • Fifty Years of Chemometrics, Fifty Years with Chemometrics
    • Forina, M., Fifty Years of Chemometrics, Fifty Years with Chemometrics. 2015, 1–26, 10.13140/RG.2.1.2199.3445.
    • (2015) , pp. 1-26
    • Forina, M.1
  • 39
    • 0033583578 scopus 로고    scopus 로고
    • Decision criteria for soft independent modelling of class analogy applied to near infrared data
    • De Maesschalck, R., Candolfi, A., Massart, D.L., Heuerding, S., Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemom. Intell. Lab. Syst. 47 (1999), 65–77, 10.1016/S0169-7439(98)00159-2.
    • (1999) Chemom. Intell. Lab. Syst. , vol.47 , pp. 65-77
    • De Maesschalck, R.1    Candolfi, A.2    Massart, D.L.3    Heuerding, S.4
  • 40
    • 84902343297 scopus 로고    scopus 로고
    • Quantitative risk assessment in classification of drugs with identical API content
    • Rodionova, O.Y., Balyklova, K.S., Titova, A.V., Pomerantsev, A.L., Quantitative risk assessment in classification of drugs with identical API content. J. Pharm. Biomed. Anal. 98 (2014), 186–192, 10.1016/j.jpba.2014.05.033.
    • (2014) J. Pharm. Biomed. Anal. , vol.98 , pp. 186-192
    • Rodionova, O.Y.1    Balyklova, K.S.2    Titova, A.V.3    Pomerantsev, A.L.4
  • 41
    • 84900315224 scopus 로고    scopus 로고
    • Concept and role of extreme objects in PCA/SIMCA
    • Pomerantsev, A.L., Rodionova, O.Y., Concept and role of extreme objects in PCA/SIMCA. J. Chemom. 28 (2014), 429–438, 10.1002/cem.2506.
    • (2014) J. Chemom. , vol.28 , pp. 429-438
    • Pomerantsev, A.L.1    Rodionova, O.Y.2
  • 42
    • 57149097874 scopus 로고    scopus 로고
    • Acceptance areas for multivariate classification derived by projection methods
    • Pomerantsev, A.L., Acceptance areas for multivariate classification derived by projection methods. J. Chemom. 22 (2008), 601–609, 10.1002/cem.1147.
    • (2008) J. Chemom. , vol.22 , pp. 601-609
    • Pomerantsev, A.L.1
  • 43
    • 84901279105 scopus 로고    scopus 로고
    • Fuzzy grid encoded independent modeling for class analogies (FIMCA)
    • Harrington, P. de B., Fuzzy grid encoded independent modeling for class analogies (FIMCA). Anal. Chem. 86 (2014), 4883–4892, 10.1021/ac5001543.
    • (2014) Anal. Chem. , vol.86 , pp. 4883-4892
    • Harrington, P.D.B.1
  • 44
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • (Accessed 6 April 2014)
    • Jackson, G.S., Edward, J., Mudholkar, Control procedures for residuals associated with principal component analysis. Technometrics 21 (1979), 341–349 http://www.jstor.org/sici?sici=00401706(1979)21:3%3C341:%3E2.0.CO;2-J (Accessed 6 April 2014).
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, G.S.1    Edward, J.2    Mudholkar3
  • 45
  • 46
    • 0001155588 scopus 로고
    • A class-modelling technique based on potential functions
    • Forina, M., Armanino, C., Leardi, R., Drava, G., A class-modelling technique based on potential functions. J. Chemom. 5 (1991), 435–453, 10.1002/cem.1180050504.
    • (1991) J. Chemom. , vol.5 , pp. 435-453
    • Forina, M.1    Armanino, C.2    Leardi, R.3    Drava, G.4
  • 47
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn 20 (1995), 273–297, 10.1007/BF00994018.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 48
    • 0033220728 scopus 로고    scopus 로고
    • Support Vector Domain Description
    • Tax, D.M., Duin, R.P., Support Vector Domain Description. 1999, 10.1016/S0167-8655(99)00087-2.
    • (1999)
    • Tax, D.M.1    Duin, R.P.2
  • 50
    • 0035965476 scopus 로고    scopus 로고
    • PLS-regression: a basic tool of chemometrics
    • Wold, S., Sjöström, M., Eriksson, L., PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58 (2001), 109–130, 10.1016/S0169-7439(01)00155-1.
    • (2001) Chemom. Intell. Lab. Syst. , vol.58 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 51
    • 84897566379 scopus 로고    scopus 로고
    • Partial least squares discriminant analysis: taking the magic away
    • Brereton, R.G., Lloyd, G.R., Partial least squares discriminant analysis: taking the magic away. J. Chemom. 28 (2014), 213–225, 10.1002/cem.2609.
    • (2014) J. Chemom. , vol.28 , pp. 213-225
    • Brereton, R.G.1    Lloyd, G.R.2
  • 52
    • 84877668594 scopus 로고    scopus 로고
    • One-class partial least squares (OCPLS) classifier
    • Xu, L., Yan, S.-M., Cai, C.-B., Yu, X.-P., One-class partial least squares (OCPLS) classifier. Chemom. Intell. Lab. Syst. 126 (2013), 1–5, 10.1016/j.chemolab.2013.04.008.
    • (2013) Chemom. Intell. Lab. Syst. , vol.126 , pp. 1-5
    • Xu, L.1    Yan, S.-M.2    Cai, C.-B.3    Yu, X.-P.4
  • 53
    • 84927576319 scopus 로고    scopus 로고
    • Partial least squares density modeling (PLS-DM) - a new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy
    • Oliveri, P., López, M.I., Casolino, M.C., Ruisánchez, I., Callao, M.P., Medini, L., Lanteri, S., Partial least squares density modeling (PLS-DM) - a new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy. Anal. Chim. Acta 851 (2014), 30–36, 10.1016/j.aca.2014.09.013.
    • (2014) Anal. Chim. Acta , vol.851 , pp. 30-36
    • Oliveri, P.1    López, M.I.2    Casolino, M.C.3    Ruisánchez, I.4    Callao, M.P.5    Medini, L.6    Lanteri, S.7
  • 54
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R.W., Stone, L.A., Computer aided design of experiments. Technometrics 11 (1969), 137–148, 10.1080/00401706.1969.10490666.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 55
    • 84952126648 scopus 로고
    • Validation of regression models: methods and examples
    • Snee, R.D., Validation of regression models: methods and examples. Technometrics 19 (1977), 415–428, 10.1080/00401706.1977.10489581.
    • (1977) Technometrics , vol.19 , pp. 415-428
    • Snee, R.D.1
  • 56
    • 84860270784 scopus 로고    scopus 로고
    • Probability of identification: a statistical model for the validation of qualitative botanical identification methods
    • (n.d.) 273–285. (Accessed 11 May).
    • R.A. LaBudde, J.M. Harnly, Probability of identification: a statistical model for the validation of qualitative botanical identification methods, J. AOAC Int. 95 (n.d.) 273–285. http://www.ncbi.nlm.nih.gov/pubmed/22468371 (Accessed 11 May 2017).
    • (2017) J. AOAC Int. , pp. 95
    • LaBudde, R.A.1    Harnly, J.M.2
  • 57
    • 84893748218 scopus 로고    scopus 로고
    • Probability of identification: adulteration of american ginseng with asian ginseng
    • (n.d.) 1258–1265. (Accessed 11 May 2017).
    • J. Harnly, P. Chen, P.D.B. Harrington, Probability of identification: adulteration of american ginseng with asian ginseng, J. AOAC Int. 96, (n.d.) 1258–1265. http://www.ncbi.nlm.nih.gov/pubmed/24645502 (Accessed 11 May 2017).
    • J. AOAC Int. , pp. 96
    • Harnly, J.1    Chen, P.2    Harrington, P.D.B.3
  • 58
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
    • Zweig, M.H., Campbell, G., Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem., 39, 1993.
    • (1993) Clin. Chem. , vol.39
    • Zweig, M.H.1    Campbell, G.2
  • 59
    • 0141518516 scopus 로고    scopus 로고
    • Receiver operating characteristic curves and their use in radiology
    • Obuchowski, N.A., Receiver operating characteristic curves and their use in radiology. Radiology 229 (2003), 3–8, 10.1148/radiol.2291010898.
    • (2003) Radiology , vol.229 , pp. 3-8
    • Obuchowski, N.A.1
  • 61
    • 0021333338 scopus 로고
    • Use of a microcomputer for the definition of multivariate confidence regions in medical diagnosis based on clinical laboratory profiles
    • Coomans, D., Broeckaert, I., Derde, M.P., Tassin, A., Massart, D.L., Wold, S., Use of a microcomputer for the definition of multivariate confidence regions in medical diagnosis based on clinical laboratory profiles. Comput. Biomed. Res. 17 (1984), 1–14, 10.1016/0010-4809(84)90002-8.
    • (1984) Comput. Biomed. Res. , vol.17 , pp. 1-14
    • Coomans, D.1    Broeckaert, I.2    Derde, M.P.3    Tassin, A.4    Massart, D.L.5    Wold, S.6
  • 62
    • 84872133270 scopus 로고    scopus 로고
    • A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine
    • Oliveri, P., Casolino, M.C., Casale, M., Medini, L., Mare, F., Lanteri, S., A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine. Anal. Chim. Acta 761 (2013), 46–52, 10.1016/j.aca.2012.11.020.
    • (2013) Anal. Chim. Acta , vol.761 , pp. 46-52
    • Oliveri, P.1    Casolino, M.C.2    Casale, M.3    Medini, L.4    Mare, F.5    Lanteri, S.6
  • 63
    • 0343896967 scopus 로고
    • Introduction of multi-criteria decision making in optimization procedures for high-performance liquid chromatographic separations
    • Smilde, A.K., Knevelman, A., Coenegracht, P.M.J., Introduction of multi-criteria decision making in optimization procedures for high-performance liquid chromatographic separations. J. Chromatogr. A 369 (1986), 1–10, 10.1016/S0021-9673(00)90093-1.
    • (1986) J. Chromatogr. A , vol.369 , pp. 1-10
    • Smilde, A.K.1    Knevelman, A.2    Coenegracht, P.M.J.3
  • 64
    • 84993970494 scopus 로고    scopus 로고
    • Rigorous and compliant approaches to one-class classification
    • Rodionova, O.Y., Oliveri, P., Pomerantsev, A.L., Rigorous and compliant approaches to one-class classification. Chemom. Intell. Lab. Syst. 159 (2016), 89–96, 10.1016/j.chemolab.2016.10.002.
    • (2016) Chemom. Intell. Lab. Syst. , vol.159 , pp. 89-96
    • Rodionova, O.Y.1    Oliveri, P.2    Pomerantsev, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.