-
1
-
-
84898957499
-
Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States. 2010
-
Developmental Disabilities Monitoring Network Surveillance Year Principal I. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States. 2010. MMWR Surveill Summ 2014; 63: 1–21.
-
(2014)
MMWR Surveill Summ
, vol.63
, pp. 1-21
-
-
-
2
-
-
84984585992
-
Association between diagnosed ADHD and selected characteristics among children aged 4-17 years: United States, 2011-2013
-
Pastor P, Reuben C, Duran C, Hawkins L. Association between diagnosed ADHD and selected characteristics among children aged 4-17 years: United States, 2011-2013. NCHS Data Brief 2015; 201: 201.
-
(2015)
NCHS Data Brief
, vol.201
, pp. 201
-
-
Pastor, P.1
Reuben, C.2
Duran, C.3
Hawkins, L.4
-
5
-
-
33750371490
-
Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample
-
Wiggins LD, Baio J, Rice C. Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample. J Dev Behav Pediatr 2006; 27: S79–S87.
-
(2006)
J Dev Behav Pediatr
, vol.27
, pp. S79-S87
-
-
Wiggins, L.D.1
Baio, J.2
Rice, C.3
-
6
-
-
78149273525
-
Psychopathology, families, and culture: Autism
-
Bernier R, Mao A, Yen J. Psychopathology, families, and culture: autism. Child Adolesc Psychiatr Clin N Am 2010; 19: 855–867.
-
(2010)
Child Adolesc Psychiatr Clin N Am
, vol.19
, pp. 855-867
-
-
Bernier, R.1
Mao, A.2
Yen, J.3
-
7
-
-
34147123692
-
The Autism Diagnostic Observation Schedule: Revised algorithms for improved diagnostic validity
-
Gotham K, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord 2007; 37: 613–627.
-
(2007)
J Autism Dev Disord
, vol.37
, pp. 613-627
-
-
Gotham, K.1
Risi, S.2
Pickles, A.3
Lord, C.4
-
8
-
-
0027997172
-
Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
-
Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.
-
(1994)
J Autism Dev Disord
, vol.24
, pp. 659-685
-
-
Lord, C.1
Rutter, M.2
Le Couteur, A.3
-
9
-
-
84865428954
-
Use of artificial intelligence to shorten the behavioral diagnosis of autism
-
Wall DP, Dally R, Luyster R, Jung JY, Deluca TF. Use of artificial intelligence to shorten the behavioral diagnosis of autism. PloS One 2012; 7: e43855.
-
(2012)
Plos One
, vol.7
-
-
Wall, D.P.1
Dally, R.2
Luyster, R.3
Jung, J.Y.4
Deluca, T.F.5
-
10
-
-
84859589892
-
Use of machine learning to shorten observation-based screening and diagnosis of autism
-
Wall DP, Kosmicki J, Deluca TF, Harstad E, Fusaro VA. Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl Psychiatry 2012; 2: e100.
-
(2012)
Transl Psychiatry
, vol.2
-
-
Wall, D.P.1
Kosmicki, J.2
Deluca, T.F.3
Harstad, E.4
Fusaro, V.A.5
-
11
-
-
84907319102
-
Testing the accuracy of an observation-based classifier for rapid detection of autism risk
-
Duda M, Kosmicki JA, Wall DP. Testing the accuracy of an observation-based classifier for rapid detection of autism risk. Transl Psychiatry 2014; 4: e424.
-
(2014)
Transl Psychiatry
, vol.4
-
-
Duda, M.1
Kosmicki, J.A.2
Wall, D.P.3
-
12
-
-
84927748501
-
Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning
-
Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl Psychiatry 2015; 5: e514.
-
(2015)
Transl Psychiatry
, vol.5
-
-
Kosmicki, J.A.1
Sochat, V.2
Duda, M.3
Wall, D.P.4
-
14
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27: 1226–1238.
-
(2005)
IEEE Trans Pattern Anal Mach Intell
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
15
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011; 12: 2825–2830.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
16
-
-
84904752145
-
Machine learning approach for classification of ADHD adults
-
Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Muller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol 2014; 93: 162–166.
-
(2014)
Int J Psychophysiol
, vol.93
, pp. 162-166
-
-
Tenev, A.1
Markovska-Simoska, S.2
Kocarev, L.3
Pop-Jordanov, J.4
Muller, A.5
Candrian, G.6
|