-
2
-
-
84904315182
-
Recognizing disguised faces: Human and machine evaluation
-
T. I. Dhamecha, R. Singh, M. Vatsa, and A. Kumar, "Recognizing disguised faces: Human and machine evaluation," PLoS ONE, vol. 9, no. 7, 2014, p. e99212.
-
(2014)
PLoS ONE
, vol.9
, Issue.7
, pp. e99212
-
-
Dhamecha, T.I.1
Singh, R.2
Vatsa, M.3
Kumar, A.4
-
3
-
-
84872044064
-
Recognizing surgically altered face images using multiobjective evolutionary algorithm
-
Jan.
-
H. Bhatt, S. Bharadwaj, R. Singh, and M. Vatsa, "Recognizing surgically altered face images using multiobjective evolutionary algorithm," IEEE Trans. Inform. Forensics Security, vol. 8, no. 1, pp. 89-100, Jan. 2013.
-
(2013)
IEEE Trans. Inform. Forensics Security
, vol.8
, Issue.1
, pp. 89-100
-
-
Bhatt, H.1
Bharadwaj, S.2
Singh, R.3
Vatsa, M.4
-
4
-
-
84944930860
-
Triangular similarity metric learning for face verification
-
L. Zheng, K. Idrissi, C. Garcia, S. Duffner, and A. Baskurt, "Triangular similarity metric learning for face verification," in Proc. IEEE Int. Conf. Workshops Automat. Face Gesture Recog., 2015, vol. 1, pp. 1-7.
-
(2015)
Proc. IEEE Int. Conf. Workshops Automat. Face Gesture Recog.
, vol.1
, pp. 1-7
-
-
Zheng, L.1
Idrissi, K.2
Garcia, C.3
Duffner, S.4
Baskurt, A.5
-
5
-
-
84964825737
-
Domain specific learning for newborn face recognition
-
Jul.
-
S. Bharadwaj, H. S. Bhatt, M. Vatsa, and R. Singh, "Domain specific learning for newborn face recognition," IEEE Trans. Inform. Forensics Security, vol. 11, no. 7, pp. 1630-1641, Jul. 2016.
-
(2016)
IEEE Trans. Inform. Forensics Security
, vol.11
, Issue.7
, pp. 1630-1641
-
-
Bharadwaj, S.1
Bhatt, H.S.2
Vatsa, M.3
Singh, R.4
-
6
-
-
85019248842
-
-
"JANUS Project Online
-
"JANUS Project," (2015). [Online]. Available: http://www.iarpa.gov/index.php/research-programs/janus
-
(2015)
-
-
-
7
-
-
84911198048
-
Deepface: Closing the gap to human-level performance in face verification
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "Deepface: Closing the gap to human-level performance in face verification," in Proc. Comput. Vis. Pattern Recog., 2014, pp. 1701-1708.
-
(2014)
Proc. Comput. Vis. Pattern Recog.
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
8
-
-
84911126535
-
Deep learning face representation from predicting 10,000 classes
-
Jun
-
Y. Sun, X. Wang, and X. Tang, "Deep learning face representation from predicting 10,000 classes," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2014, pp. 1891-1898.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog
, pp. 1891-1898
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
9
-
-
84937852544
-
Deep learning face representation by joint identification-verification
-
Y. Sun, Y. Chen, X. Wang, and X. Tang, "Deep learning face representation by joint identification-verification," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1988-1996.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1988-1996
-
-
Sun, Y.1
Chen, Y.2
Wang, X.3
Tang, X.4
-
10
-
-
84911459575
-
Discriminative deep metric learning for face verification in the wild
-
J. Hu, J. Lu, and Y.-P. Tan, "Discriminative deep metric learning for face verification in the wild," in Proc. Comput. Vis. Pattern Recog., 2014, pp. 1875-1882.
-
(2014)
Proc. Comput. Vis. Pattern Recog.
, pp. 1875-1882
-
-
Hu, J.1
Lu, J.2
Tan, Y.-P.3
-
11
-
-
51849117118
-
-
Univ.Massachusetts,Amherst,MA, USA, Tech. Rep. 07-49, Oct
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, "Labeled faces in the wild: A database for studying face recognition in unconstrained environments," Univ.Massachusetts,Amherst,MA, USA, Tech. Rep. 07-49, Oct. 2007.
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
12
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
L. Wolf, T. Hassner, and I.Maoz, "Face recognition in unconstrained videos with matched background similarity," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2011, pp. 529-534.
-
(2011)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 529-534
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
-
13
-
-
84911383347
-
Stacked progressive autoencoders (SPAE) for face recognition across poses
-
Jun
-
M. Kan, S. Shan, H. Chang, and X. Chen, "Stacked progressive autoencoders (SPAE) for face recognition across poses," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2014, pp. 1883-1890.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 1883-1890
-
-
Kan, M.1
Shan, S.2
Chang, H.3
Chen, X.4
-
14
-
-
76449115179
-
Multi-PIE
-
R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, "Multi-PIE," Image Vision Comput., vol. 28, no. 5, pp. 807-813, 2010.
-
(2010)
Image Vision Comput.
, vol.28
, Issue.5
, pp. 807-813
-
-
Gross, R.1
Matthews, I.2
Cohn, J.3
Kanade, T.4
Baker, S.5
-
15
-
-
0034290919
-
The FERET evaluation methodology for face-recognition algorithms
-
Oct.
-
P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, "The FERET evaluation methodology for face-recognition algorithms," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1090-1104, Oct. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.10
, pp. 1090-1104
-
-
Phillips, P.J.1
Moon, H.2
Rizvi, S.A.3
Rauss, P.J.4
-
16
-
-
84921760162
-
MDLFace: Memorability augmented deep learning for video face recognition
-
G. Goswami, R. Bhardwaj, R. Singh, and M. Vatsa, "MDLFace: Memorability augmented deep learning for video face recognition," in Proc. Int. Joint Conf. Biometrics, 2014, pp. 1-7.
-
(2014)
Proc. Int. Joint Conf. Biometrics
, pp. 1-7
-
-
Goswami, G.1
Bhardwaj, R.2
Singh, R.3
Vatsa, M.4
-
17
-
-
84893769964
-
The challenge of face recognition from digital point-and-shoot cameras
-
J. Beveridge, P. Phillips, D. Bolme, B. Draper, G. Givens, Y. M. Lui, M. Teli, H. Zhang, W. Scruggs, K. Bowyer, P. Flynn, and S. Cheng, "The challenge of face recognition from digital point-and-shoot cameras," in Proc. Int. Conf. Biometrics: Theory Appl. Syst., 2013, pp. 1-8.
-
(2013)
Proc. Int. Conf. Biometrics: Theory Appl. Syst.
, pp. 1-8
-
-
Beveridge, J.1
Phillips, P.2
Bolme, D.3
Draper, B.4
Givens, G.5
Lui, Y.M.6
Teli, M.7
Zhang, H.8
Scruggs, W.9
Bowyer, K.10
Flynn, P.11
Cheng, S.12
-
18
-
-
84937885357
-
Multi-view perceptron: A deep model for learning face identity and view representations
-
Z. Zhu, P. Luo, X. Wang, and X. Tang, "Multi-view perceptron: A deep model for learning face identity and view representations," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 217-225.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 217-225
-
-
Zhu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
19
-
-
84924588005
-
Deep reconstruction models for image set classification
-
Apr.
-
M. Hayat, M. Bennamoun, and S. An, "Deep reconstruction models for image set classification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 4, pp. 713-727, Apr. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.4
, pp. 713-727
-
-
Hayat, M.1
Bennamoun, M.2
An, S.3
-
20
-
-
51949088884
-
Face tracking and recognition with visual constraints in real-world videos
-
M. Kim, S. Kumar, V. Pavlovic, and H. Rowley, "Face tracking and recognition with visual constraints in real-world videos," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008, pp. 1-8.
-
(2008)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 1-8
-
-
Kim, M.1
Kumar, S.2
Pavlovic, V.3
Rowley, H.4
-
21
-
-
77953185711
-
Attribute and simile classifiers for face verification
-
N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and simile classifiers for face verification," in Proc. Int. Conf. Comput. Vision, 2009, pp. 365-372.
-
(2009)
Proc. Int. Conf. Comput. Vision
, pp. 365-372
-
-
Kumar, N.1
Berg, A.C.2
Belhumeur, P.N.3
Nayar, S.K.4
-
22
-
-
84931584166
-
-
arXiv:1502.00873
-
Y. Sun, D. Liang, X. Wang, and X. Tang, "Deepid3: Face recognition with very deep neural networks," arXiv:1502.00873, 2015.
-
(2015)
Deepid3: Face Recognition with Very Deep Neural Networks
-
-
Sun, Y.1
Liang, D.2
Wang, X.3
Tang, X.4
-
23
-
-
84939231326
-
Single sample face recognition via learning deep supervised autoencoders
-
Oct.
-
S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, "Single sample face recognition via learning deep supervised autoencoders," IEEE Trans. Inform. Forensics Security, vol. 10, no. 10, pp. 2108-2118, Oct. 2015.
-
(2015)
IEEE Trans. Inform. Forensics Security
, vol.10
, Issue.10
, pp. 2108-2118
-
-
Gao, S.1
Zhang, Y.2
Jia, K.3
Lu, J.4
Zhang, Y.5
-
24
-
-
0004171986
-
-
Computer Vision Center, Barcelona, Spain, Tech. Rep. 24, Jun
-
A. Martinez and R. Benavente, "The AR face database," Computer Vision Center, Barcelona, Spain, Tech. Rep. 24, Jun. 1998.
-
(1998)
The AR Face Database
-
-
Martinez, A.1
Benavente, R.2
-
25
-
-
0035363672
-
From fewto many: Illumination cone models for face recognition under variable lighting and pose
-
Jun.
-
A. Georghiades, P. Belhumeur, and D. Kriegman, "From fewto many: Illumination cone models for face recognition under variable lighting and pose," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 643-660, Jun. 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.1
Belhumeur, P.2
Kriegman, D.3
-
26
-
-
84946769681
-
Deeply learned face representations are sparse, selective, and robust
-
Y. Sun, X. Wang, and X. Tang, "Deeply learned face representations are sparse, selective, and robust," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 2892-2900.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 2892-2900
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
27
-
-
84961208191
-
Surpassing human-level face verification performance on LFW with gaussianface
-
C. Lu and X. Tang, "Surpassing human-level face verification performance on LFW with gaussianface," in Proc. 29th Nat. Conf. Artif. Intell., 2015, pp. 3811-3819.
-
(2015)
Proc. 29th Nat. Conf. Artif. Intell.
, pp. 3811-3819
-
-
Lu, C.1
Tang, X.2
-
28
-
-
84930206401
-
Joint feature learning for face recognition
-
Jul.
-
J. Lu, V. Liong, G. Wang, and P. Moulin, "Joint feature learning for face recognition," IEEE Trans. Inform. Forensics Security, vol. 10, no. 7, pp. 1371-1383, Jul. 2015.
-
(2015)
IEEE Trans. Inform. Forensics Security
, vol.10
, Issue.7
, pp. 1371-1383
-
-
Lu, J.1
Liong, V.2
Wang, G.3
Moulin, P.4
-
29
-
-
0022471098
-
Learning representations by back-propagating errors
-
Oct.
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
30
-
-
0024774330
-
Neural networks and principal component analysis: Learning from examples without local minima
-
Jan.
-
P. Baldi and K. Hornik, "Neural networks and principal component analysis: Learning from examples without local minima," Neural Netw., vol. 2, no. 1, pp. 53-58, Jan. 1989.
-
(1989)
Neural Netw.
, vol.2
, Issue.1
, pp. 53-58
-
-
Baldi, P.1
Hornik, K.2
-
31
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
presented at Edinburgh, Scotland, U.K.
-
M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha, "Marginalized denoising autoencoders for domain adaptation," presented at the 29th Int. Conf. Machine Learning, Edinburgh, Scotland, U.K., 2012.
-
(2012)
The 29th Int. Conf. Machine Learning
-
-
Chen, M.1
Xu, Z.E.2
Weinberger, K.Q.3
Sha, F.4
-
32
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learning, vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
33
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep networks," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 153-160.
-
(2007)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
34
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
35
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
Jun
-
K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. Le-Cun, "Learning invariant features through topographic filter maps," in Proc. Conf. Comput. Vis. Pattern Recog., Jun. 2009, pp. 1605-1612.
-
(2009)
Proc. Conf. Comput. Vis. Pattern Recog.
, pp. 1605-1612
-
-
Kavukcuoglu, K.1
Ranzato, M.2
Fergus, R.3
Le-Cun, Y.4
-
36
-
-
85161980001
-
Sparse deep belief net model for visual area v2
-
H. Lee, C. Ekanadham, and A. Y. Ng, "Sparse deep belief net model for visual area v2," in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 873-880.
-
(2008)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
37
-
-
84877728447
-
Image denoising and inpainting with deep neural networks
-
J. Xie, L. Xu, and E. Chen, "Image denoising and inpainting with deep neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 350-358.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 350-358
-
-
Xie, J.1
Xu, L.2
Chen, E.3
-
38
-
-
80053460450
-
Contractive autoencoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, "Contractive autoencoders: Explicit invariance during feature extraction," in Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 833-840.
-
(2011)
Proc. 28th Int. Conf. Mach. Learn.
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
39
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 609-616.
-
(2009)
Proc. 26th Annu. Int. Conf. Mach. Learn.
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
40
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, "What is the best multi-stage architecture for object recognition?" in Proc. Int. Conf. Comput. Vis., 2009, pp. 2146-2153.
-
(2009)
Proc. Int. Conf. Comput. Vis.
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
41
-
-
0029291966
-
Sparse approximate solutions to linear systems
-
B. K. Natarajan, "Sparse approximate solutions to linear systems," SIAM J. Comput., vol. 24, no. 2, pp. 227-234, 1995.
-
(1995)
SIAM J. Comput.
, vol.24
, Issue.2
, pp. 227-234
-
-
Natarajan, B.K.1
-
42
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
-
D. L. Donoho, "For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797-829, 2006.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, Issue.6
, pp. 797-829
-
-
Donoho, D.L.1
-
43
-
-
0035273106
-
Atomic decomposition by basis pursuit
-
S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001.
-
(2001)
SIAM Rev.
, vol.43
, Issue.1
, pp. 129-159
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
44
-
-
79955040218
-
Regression shrinkage and selection via the lasso: A retrospective
-
R. Tibshirani, "Regression shrinkage and selection via the lasso: a retrospective," J. Roy. Statist. Soc.: Series B (Statist. Methodology), vol. 73, no. 3, pp. 273-282, 2011.
-
(2011)
J. Roy. Statist. Soc.: Series B (Statist. Methodology)
, vol.73
, Issue.3
, pp. 273-282
-
-
Tibshirani, R.1
-
45
-
-
7044231546
-
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
-
I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, 2004.
-
(2004)
Commun. Pure Appl. Math.
, vol.57
, Issue.11
, pp. 1413-1457
-
-
Daubechies, I.1
Defrise, M.2
De Mol, C.3
-
46
-
-
84996991237
-
Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images
-
K. Cho, "Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images," in Proc. Int. Conf. Mach. Learn., 2013, pp. 432-440.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, pp. 432-440
-
-
Cho, K.1
-
47
-
-
77951546345
-
Theoretical and empirical results for recovery from multiple measurements
-
May
-
E. van den Berg and M. Friedlander, "Theoretical and empirical results for recovery from multiple measurements," IEEE Trans. Inform. Theory, vol. 56, no. 5, pp. 2516-2527, May 2010.
-
(2010)
IEEE Trans. Inform. Theory
, vol.56
, Issue.5
, pp. 2516-2527
-
-
Berg Den Van, E.1
Friedlander, M.2
-
49
-
-
70449483397
-
Signal restoration with overcomplete wavelet transforms: Comparison of analysis and synthesis priors
-
I. W. Selesnick and M. A. T. Figueiredo, "Signal restoration with overcomplete wavelet transforms: Comparison of analysis and synthesis priors," in Proc. SPIE, 2009, vol. 7446, pp. 74 460D-74 460D-15.
-
(2009)
Proc. SPIE
, vol.7446
, pp. 74460D-74460D15
-
-
Selesnick, I.W.1
Figueiredo, M.A.T.2
-
50
-
-
84877901629
-
Compressed sensing with nonlinear observations and related nonlinear optimization problems
-
Jun.
-
T. Blumensath, "Compressed sensing with nonlinear observations and related nonlinear optimization problems," IEEE Trans. Inform. Theory, vol. 59, no. 6, pp. 3466-3474, Jun. 2013.
-
(2013)
IEEE Trans. Inform. Theory
, vol.59
, Issue.6
, pp. 3466-3474
-
-
Blumensath, T.1
-
51
-
-
84959046858
-
Non linear sparse recovery algorithm
-
P. Das, M. Jain, and A. Majumdar, "Non linear sparse recovery algorithm," in Proc. IEEE Int. Symp. Signal Process. Inform. Technol., 2014, pp. 000327-000332.
-
(2014)
Proc. IEEE Int. Symp. Signal Process. Inform. Technol.
, pp. 000327-000332
-
-
Das, P.1
Jain, M.2
Majumdar, A.3
-
52
-
-
79957957723
-
Fixed point and Bregman iterative methods for matrix rank minimization
-
S. Ma, D. Goldfarb, and L. Chen, "Fixed point and Bregman iterative methods for matrix rank minimization," Math. Program. Series A, vol. 128, no. 1-2, pp. 321-353, 2011.
-
(2011)
Math. Program. Series A
, vol.128
, Issue.1-2
, pp. 321-353
-
-
Ma, S.1
Goldfarb, D.2
Chen, L.3
-
53
-
-
79952483985
-
Convergence of fixed-point continuation algorithms for matrix rank minimization
-
D. Goldfarb and S. Ma, "Convergence of fixed-point continuation algorithms for matrix rank minimization," Found. Comput. Math., vol. 11, no. 2, pp. 183-210, 2011.
-
(2011)
Found. Comput. Math.
, vol.11
, Issue.2
, pp. 183-210
-
-
Goldfarb, D.1
Ma, S.2
-
54
-
-
33947369065
-
Face recognition by humans: Nineteen results all computer vision researchers should know about
-
Nov.
-
P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell, "Face recognition by humans: Nineteen results all computer vision researchers should know about," Proc. IEEE, vol. 94, no. 11, pp. 1948-1962, Nov. 2006.
-
(2006)
Proc. IEEE
, vol.94
, Issue.11
, pp. 1948-1962
-
-
Sinha, P.1
Balas, B.2
Ostrovsky, Y.3
Russell, R.4
-
55
-
-
84863359440
-
Kernel sparse representation-based classifier
-
Apr.
-
L. Zhang, W.-D. Zhou, P.-C. Chang, J. Liu, Z. Yan, T. Wang, and F.-Z. Li, "Kernel sparse representation-based classifier," IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1684-1695, Apr. 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.4
, pp. 1684-1695
-
-
Zhang, L.1
Zhou, W.-D.2
Chang, P.-C.3
Liu, J.4
Yan, Z.5
Wang, T.6
Li, F.-Z.7
-
56
-
-
2142812371
-
Robust real-time face detection
-
P. Viola and M. J. Jones, "Robust real-time face detection," Int. J. Comput. Vis., vol. 57, no. 2, pp. 137-154, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.1
Jones, M.J.2
-
57
-
-
84942466590
-
Effective face frontalization in unconstrained images
-
T. Hassner, S. Harel, E. Paz, and R. Enbar, "Effective face frontalization in unconstrained images," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 4295-4304.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 4295-4304
-
-
Hassner, T.1
Harel, S.2
Paz, E.3
Enbar, R.4
-
58
-
-
84978708049
-
-
[Online]
-
B. Amos, B. Ludwiczuk, J. Harkes, P. Pillai, K. Elgazzar, and M. Satyanarayanan, "OpenFace: Face recognition with deep neural networks," [Online]. Available: http://github.com/cmusatyalab/openface
-
OpenFace: Face Recognition with Deep Neural Networks
-
-
Amos, B.1
Ludwiczuk, B.2
Harkes, J.3
Pillai, P.4
Elgazzar, K.5
Satyanarayanan, M.6
-
59
-
-
84946751287
-
Facenet: A unified embedding for face recognition and clustering
-
F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 815-823.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
60
-
-
84859473821
-
Learning algorithms for the classification restricted Boltzmann machine
-
H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, "Learning algorithms for the classification restricted Boltzmann machine," Mach. Learn. Res., vol. 13, no. 1, pp. 643-669, 2012.
-
(2012)
Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 643-669
-
-
Larochelle, H.1
Mandel, M.2
Pascanu, R.3
Bengio, Y.4
|