메뉴 건너뛰기




Volumn 28, Issue 4, 2017, Pages 733-740

Comprehensive evaluation of published gene expression prognostic signatures for biomarker-based lung cancer clinical studies

Author keywords

Meta analysis; Non small cell lung cancer; Prognostic gene signatures

Indexed keywords

MESSENGER RNA; TUMOR MARKER; TRANSCRIPTOME;

EID: 85019128028     PISSN: 09237534     EISSN: 15698041     Source Type: Journal    
DOI: 10.1093/annonc/mdw683     Document Type: Review
Times cited : (63)

References (22)
  • 1
    • 37549072095 scopus 로고    scopus 로고
    • Non-small Cell Lung Cancer 2016 (Version 4.2016).
    • National Comprehensive Cancer Network I. In NCCN Clinical Practice Guidelines in Oncology. Non-small Cell Lung Cancer 2016 (Version 4.2016).
    • In NCCN Clinical Practice Guidelines in Oncology
  • 2
    • 44349187295 scopus 로고    scopus 로고
    • Staging of non-small cell lung cancer
    • Tanoue LT. Staging of non-small cell lung cancer. Semin Respir Crit Care Med 2008; 29: 248-260.
    • (2008) Semin Respir Crit Care Med , vol.29 , pp. 248-260
    • Tanoue, L.T.1
  • 3
    • 77950571895 scopus 로고    scopus 로고
    • Gene expression-based prognostic signatures in lung cancer: Ready for clinical use?
    • Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: Ready for clinical use? J Natl Cancer Inst 2010; 102: 464-474.
    • (2010) J Natl Cancer Inst , vol.102 , pp. 464-474
    • Subramanian, J.1    Simon, R.2
  • 4
    • 77953135586 scopus 로고    scopus 로고
    • What should physicians look for in evaluating prognostic gene-expression signatures?
    • Subramanian J, Simon R. What should physicians look for in evaluating prognostic gene-expression signatures? Nat Rev Clin Oncol 2010; 7: 327-334.
    • (2010) Nat Rev Clin Oncol , vol.7 , pp. 327-334
    • Subramanian, J.1    Simon, R.2
  • 5
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2004; 2: E108.
    • (2004) PLoS Biol , vol.2
    • Bair, E.1    Tibshirani, R.2
  • 6
    • 70349388721 scopus 로고    scopus 로고
    • Understanding prognostic gene expression signatures in lung cancer
    • Zhu CQ, Pintilie M, John T et al. Understanding prognostic gene expression signatures in lung cancer. Clin Lung Cancer 2009; 10: 331-340.
    • (2009) Clin Lung Cancer , vol.10 , pp. 331-340
    • Zhu, C.Q.1    Pintilie, M.2    John, T.3
  • 7
    • 0003421882 scopus 로고    scopus 로고
    • Modelling Survival Data in Medical Research
    • Raton, Florida, USA: Chapman & Hall/CRC
    • Collett D. Modelling Survival Data in Medical Research. Raton, Florida, USA: Chapman & Hall/CRC 2003.
    • (2003)
    • Collett, D.1
  • 8
    • 33645085023 scopus 로고    scopus 로고
    • Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers
    • Zheng Y, Cai T, Feng Z. Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers. Biometrics 2006; 62: 279-287.
    • (2006) Biometrics , vol.62 , pp. 279-287
    • Zheng, Y.1    Cai, T.2    Feng, Z.3
  • 9
    • 84862848034 scopus 로고    scopus 로고
    • Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer
    • Chen DT, Hsu YL, Fulp WJ et al. Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer. J Natl Cancer Inst 2011; 103: 1859-1870.
    • (2011) J Natl Cancer Inst , vol.103 , pp. 1859-1870
    • Chen, D.T.1    Hsu, Y.L.2    Fulp, W.J.3
  • 10
    • 49149129916 scopus 로고    scopus 로고
    • Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study
    • Shedden K, Taylor JM, Enkemann SA et al. Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study. Nat Med 2008; 14: 822-827.
    • (2008) Nat Med , vol.14 , pp. 822-827
    • Shedden, K.1    Taylor, J.M.2    Enkemann, S.A.3
  • 11
    • 67649965344 scopus 로고    scopus 로고
    • Relapse-related molecular signature in lung adenocarcinomas identies patients with dismal prognosis
    • Tomida S, Takeuchi T, Shimada Y et al. Relapse-related molecular signature in lung adenocarcinomas identies patients with dismal prognosis. J Clin Oncol 2009; 27: 2793-2799.
    • (2009) J Clin Oncol , vol.27 , pp. 2793-2799
    • Tomida, S.1    Takeuchi, T.2    Shimada, Y.3
  • 12
    • 58849167381 scopus 로고    scopus 로고
    • An immune response enriched 72- gene prognostic prole for early-stage non-small-cell lung cancer
    • Roepman P, Jassem J, Smit EF et al. An immune response enriched 72- gene prognostic prole for early-stage non-small-cell lung cancer. Clin Cancer Res 2009; 15: 284-290.
    • (2009) Clin Cancer Res , vol.15 , pp. 284-290
    • Roepman, P.1    Jassem, J.2    Smit, E.F.3
  • 14
    • 80055090025 scopus 로고    scopus 로고
    • Most random gene expression signatures are signicantly associated with breast cancer outcome
    • Venet D, Dumont JE, Detours V. Most random gene expression signatures are signicantly associated with breast cancer outcome. PLoS Comput Biol 2011; 7: e1002240.
    • (2011) PLoS Comput Biol , vol.7
    • Venet, D.1    Dumont, J.E.2    Detours, V.3
  • 15
    • 2342471392 scopus 로고    scopus 로고
    • Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to getinib
    • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to getinib. N Engl J Med 2004; 350: 2129-2139.
    • (2004) N Engl J Med , vol.350 , pp. 2129-2139
    • Lynch, T.J.1    Bell, D.W.2    Sordella, R.3
  • 16
    • 28844449401 scopus 로고    scopus 로고
    • Epidermal growth factor receptor mutations and gene amplication in non-small-cell lung cancer: Molecular analysis of the ideal/intact getinib trials
    • Bell DW, Lynch TJ, Haserlat SM et al. Epidermal growth factor receptor mutations and gene amplication in non-small-cell lung cancer: Molecular analysis of the ideal/intact getinib trials. J Clin Oncol 2005; 23: 8081-8092.
    • (2005) J Clin Oncol , vol.23 , pp. 8081-8092
    • Bell, D.W.1    Lynch, T.J.2    Haserlat, S.M.3
  • 17
    • 69949162760 scopus 로고    scopus 로고
    • Getinib or carboplatin-paclitaxel in pulmonary adenocarcinoma
    • Mok TS, Wu YL, Thongprasert S et al. Getinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947-957.
    • (2009) N Engl J Med , vol.361 , pp. 947-957
    • Mok, T.S.1    Wu, Y.L.2    Thongprasert, S.3
  • 18
    • 52049090365 scopus 로고    scopus 로고
    • Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21
    • Zhu CQ, da Cunha Santos G, Ding K et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 2008; 26: 4268-4275.
    • (2008) J Clin Oncol , vol.26 , pp. 4268-4275
    • Zhu, C.Q.1    da Cunha Santos, G.2    Ding, K.3
  • 19
    • 84871998076 scopus 로고    scopus 로고
    • An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identies Axl as a therapeutic target for overcoming EGFR inhibitor resistance
    • Byers LA, Diao L, Wang J et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19: 279-290.
    • (2013) Clin Cancer Res , vol.19 , pp. 279-290
    • Byers, L.A.1    Diao, L.2    Wang, J.3
  • 20
    • 84925442200 scopus 로고    scopus 로고
    • Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA
    • Zhao Q, Shi X, Xie Y et al. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform 2015; 16: 291-303.
    • (2015) Brief Bioinform , vol.16 , pp. 291-303
    • Zhao, Q.1    Shi, X.2    Xie, Y.3
  • 21
    • 80052160144 scopus 로고    scopus 로고
    • Principal component analysis based methods in bioinformatics studies
    • Ma S, Dai Y. Principal component analysis based methods in bioinformatics studies. Brief Bioinform 2011; 12: 714-722.
    • (2011) Brief Bioinform , vol.12 , pp. 714-722
    • Ma, S.1    Dai, Y.2
  • 22
    • 33645092633 scopus 로고    scopus 로고
    • Additive risk models for survival data with high-dimensional covariates
    • Ma S, Kosorok MR, Fine JP. Additive risk models for survival data with high-dimensional covariates. Biometrics 2006; 62: 202-210.
    • (2006) Biometrics , vol.62 , pp. 202-210
    • Ma, S.1    Kosorok, M.R.2    Fine, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.