-
1
-
-
37549072095
-
-
Non-small Cell Lung Cancer 2016 (Version 4.2016).
-
National Comprehensive Cancer Network I. In NCCN Clinical Practice Guidelines in Oncology. Non-small Cell Lung Cancer 2016 (Version 4.2016).
-
In NCCN Clinical Practice Guidelines in Oncology
-
-
-
2
-
-
44349187295
-
Staging of non-small cell lung cancer
-
Tanoue LT. Staging of non-small cell lung cancer. Semin Respir Crit Care Med 2008; 29: 248-260.
-
(2008)
Semin Respir Crit Care Med
, vol.29
, pp. 248-260
-
-
Tanoue, L.T.1
-
3
-
-
77950571895
-
Gene expression-based prognostic signatures in lung cancer: Ready for clinical use?
-
Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: Ready for clinical use? J Natl Cancer Inst 2010; 102: 464-474.
-
(2010)
J Natl Cancer Inst
, vol.102
, pp. 464-474
-
-
Subramanian, J.1
Simon, R.2
-
4
-
-
77953135586
-
What should physicians look for in evaluating prognostic gene-expression signatures?
-
Subramanian J, Simon R. What should physicians look for in evaluating prognostic gene-expression signatures? Nat Rev Clin Oncol 2010; 7: 327-334.
-
(2010)
Nat Rev Clin Oncol
, vol.7
, pp. 327-334
-
-
Subramanian, J.1
Simon, R.2
-
5
-
-
19344375744
-
Semi-supervised methods to predict patient survival from gene expression data
-
Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2004; 2: E108.
-
(2004)
PLoS Biol
, vol.2
-
-
Bair, E.1
Tibshirani, R.2
-
6
-
-
70349388721
-
Understanding prognostic gene expression signatures in lung cancer
-
Zhu CQ, Pintilie M, John T et al. Understanding prognostic gene expression signatures in lung cancer. Clin Lung Cancer 2009; 10: 331-340.
-
(2009)
Clin Lung Cancer
, vol.10
, pp. 331-340
-
-
Zhu, C.Q.1
Pintilie, M.2
John, T.3
-
7
-
-
0003421882
-
Modelling Survival Data in Medical Research
-
Raton, Florida, USA: Chapman & Hall/CRC
-
Collett D. Modelling Survival Data in Medical Research. Raton, Florida, USA: Chapman & Hall/CRC 2003.
-
(2003)
-
-
Collett, D.1
-
8
-
-
33645085023
-
Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers
-
Zheng Y, Cai T, Feng Z. Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers. Biometrics 2006; 62: 279-287.
-
(2006)
Biometrics
, vol.62
, pp. 279-287
-
-
Zheng, Y.1
Cai, T.2
Feng, Z.3
-
9
-
-
84862848034
-
Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer
-
Chen DT, Hsu YL, Fulp WJ et al. Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer. J Natl Cancer Inst 2011; 103: 1859-1870.
-
(2011)
J Natl Cancer Inst
, vol.103
, pp. 1859-1870
-
-
Chen, D.T.1
Hsu, Y.L.2
Fulp, W.J.3
-
10
-
-
49149129916
-
Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study
-
Shedden K, Taylor JM, Enkemann SA et al. Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study. Nat Med 2008; 14: 822-827.
-
(2008)
Nat Med
, vol.14
, pp. 822-827
-
-
Shedden, K.1
Taylor, J.M.2
Enkemann, S.A.3
-
11
-
-
67649965344
-
Relapse-related molecular signature in lung adenocarcinomas identies patients with dismal prognosis
-
Tomida S, Takeuchi T, Shimada Y et al. Relapse-related molecular signature in lung adenocarcinomas identies patients with dismal prognosis. J Clin Oncol 2009; 27: 2793-2799.
-
(2009)
J Clin Oncol
, vol.27
, pp. 2793-2799
-
-
Tomida, S.1
Takeuchi, T.2
Shimada, Y.3
-
12
-
-
58849167381
-
An immune response enriched 72- gene prognostic prole for early-stage non-small-cell lung cancer
-
Roepman P, Jassem J, Smit EF et al. An immune response enriched 72- gene prognostic prole for early-stage non-small-cell lung cancer. Clin Cancer Res 2009; 15: 284-290.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 284-290
-
-
Roepman, P.1
Jassem, J.2
Smit, E.F.3
-
14
-
-
80055090025
-
Most random gene expression signatures are signicantly associated with breast cancer outcome
-
Venet D, Dumont JE, Detours V. Most random gene expression signatures are signicantly associated with breast cancer outcome. PLoS Comput Biol 2011; 7: e1002240.
-
(2011)
PLoS Comput Biol
, vol.7
-
-
Venet, D.1
Dumont, J.E.2
Detours, V.3
-
15
-
-
2342471392
-
Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to getinib
-
Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to getinib. N Engl J Med 2004; 350: 2129-2139.
-
(2004)
N Engl J Med
, vol.350
, pp. 2129-2139
-
-
Lynch, T.J.1
Bell, D.W.2
Sordella, R.3
-
16
-
-
28844449401
-
Epidermal growth factor receptor mutations and gene amplication in non-small-cell lung cancer: Molecular analysis of the ideal/intact getinib trials
-
Bell DW, Lynch TJ, Haserlat SM et al. Epidermal growth factor receptor mutations and gene amplication in non-small-cell lung cancer: Molecular analysis of the ideal/intact getinib trials. J Clin Oncol 2005; 23: 8081-8092.
-
(2005)
J Clin Oncol
, vol.23
, pp. 8081-8092
-
-
Bell, D.W.1
Lynch, T.J.2
Haserlat, S.M.3
-
17
-
-
69949162760
-
Getinib or carboplatin-paclitaxel in pulmonary adenocarcinoma
-
Mok TS, Wu YL, Thongprasert S et al. Getinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947-957.
-
(2009)
N Engl J Med
, vol.361
, pp. 947-957
-
-
Mok, T.S.1
Wu, Y.L.2
Thongprasert, S.3
-
18
-
-
52049090365
-
Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21
-
Zhu CQ, da Cunha Santos G, Ding K et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 2008; 26: 4268-4275.
-
(2008)
J Clin Oncol
, vol.26
, pp. 4268-4275
-
-
Zhu, C.Q.1
da Cunha Santos, G.2
Ding, K.3
-
19
-
-
84871998076
-
An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identies Axl as a therapeutic target for overcoming EGFR inhibitor resistance
-
Byers LA, Diao L, Wang J et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19: 279-290.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 279-290
-
-
Byers, L.A.1
Diao, L.2
Wang, J.3
-
20
-
-
84925442200
-
Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA
-
Zhao Q, Shi X, Xie Y et al. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform 2015; 16: 291-303.
-
(2015)
Brief Bioinform
, vol.16
, pp. 291-303
-
-
Zhao, Q.1
Shi, X.2
Xie, Y.3
-
21
-
-
80052160144
-
Principal component analysis based methods in bioinformatics studies
-
Ma S, Dai Y. Principal component analysis based methods in bioinformatics studies. Brief Bioinform 2011; 12: 714-722.
-
(2011)
Brief Bioinform
, vol.12
, pp. 714-722
-
-
Ma, S.1
Dai, Y.2
-
22
-
-
33645092633
-
Additive risk models for survival data with high-dimensional covariates
-
Ma S, Kosorok MR, Fine JP. Additive risk models for survival data with high-dimensional covariates. Biometrics 2006; 62: 202-210.
-
(2006)
Biometrics
, vol.62
, pp. 202-210
-
-
Ma, S.1
Kosorok, M.R.2
Fine, J.P.3
|